Petabyte-Scale Multi-Morphometry of Single Neurons for Whole Brains
Published in Neuroinformatics, Volume 20, pages 525–536, 2022
Recommended citation: Jiang, S., Wang, Y., Liu, L., Ding, L., Ruan, Z., Dong, H. W., ... & Peng, H. (2022). Petabyte-scale multi-morphometry of single neurons for whole brains. Neuroinformatics, 20(2), 525-536. http://sd-jiang.github.io/files/MorphoHub.pdf
Abstract:
Recent advances in brain imaging allow producing large amounts of 3-D volumetric data from which morphometry data is reconstructed and measured. Fine detailed structural morphometry of individual neurons, including somata, dendrites, axons, and synaptic connectivity based on digitally reconstructed neurons, is essential for cataloging neuron types and their connectivity. To produce quality morphometry at large scale, it is highly desirable but extremely challenging to efficiently handle petabyte-scale high-resolution whole brain imaging database. Here, we developed a multi-level method to produce high quality somatic, dendritic, axonal, and potential synaptic morphometry, which was made possible by utilizing necessary petabyte hardware and software platform to optimize both the data and workflow management. Our method also boosts data sharing and remote collaborative validation. We highlight a petabyte application dataset involving 62 whole mouse brains, from which we identified 50,233 somata of individual neurons, profiled the dendrites of 11,322 neurons, reconstructed the full 3-D morphology of 1,050 neurons including their dendrites and full axons, and detected 1.9 million putative synaptic sites derived from axonal boutons. Analysis and simulation of these data indicate the promise of this approach for modern large-scale morphology applications.