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Abstract

Recent advances in brain imaging allow producing large amounts of 3-D volumetric data from which morphometry data
is reconstructed and measured. Fine detailed structural morphometry of individual neurons, including somata, dendrites,
axons, and synaptic connectivity based on digitally reconstructed neurons, is essential for cataloging neuron types and their
connectivity. To produce quality morphometry at large scale, it is highly desirable but extremely challenging to efficiently
handle petabyte-scale high-resolution whole brain imaging database. Here, we developed a multi-level method to produce
high quality somatic, dendritic, axonal, and potential synaptic morphometry, which was made possible by utilizing necessary
petabyte hardware and software platform to optimize both the data and workflow management. Our method also boosts data
sharing and remote collaborative validation. We highlight a petabyte application dataset involving 62 whole mouse brains,
from which we identified 50,233 somata of individual neurons, profiled the dendrites of 11,322 neurons, reconstructed the
full 3-D morphology of 1,050 neurons including their dendrites and full axons, and detected 1.9 million putative synaptic
sites derived from axonal boutons. Analysis and simulation of these data indicate the promise of this approach for modern
large-scale morphology applications.
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Introduction

Reconstructing the complete 3-D shape or morphology of a
neuron, including its dendrites and axons in their entirety,
as well as finer structures such as the somata, dendritic
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Mammalian brains, of at least hundreds of cubic millim-
eters in volume, are very large when sub-micrometer resolu-
tion imaging is used to acquire 3-D volumetric image datasets
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the mouse brain, a widely used model system of mammalian
brains, a typical 3-D brain-image dataset will have tens of tera-
voxels in volume (Economo et al., 2016; Gong et al., 2016).
On the other hand, neurons have a very complicated tree-like
shape, and are often labelled and visualized sparsely using
chemical (Zeng, 2018; Zingg et al., 2014), transgenic (Rotolo
et al., 2008) or viral approaches (Aransay et al., 2015; Karube
et al., 2004). The number of morphologically distinguishable
neurons per brain is often limited. Therefore, to understand the
vast complexity and variation of neurons, it is crucial to obtain
a large collection of brain image datasets (Micheva & Smith,
2007; Sivagnanam et al., 2015). As each voxel is often stored
as one or more bytes, the multi-morphometry problem arises
as a petabyte-computing challenge, and as a paramount task
for current bioimage informatics applications and technolo-
gies (Eliceiri et al., 2012; Meijering et al., 2016; Myers, 2012;
Swedlow et al., 2003).

There is a long history of reconstructing individual
neurons’ morphology with image analysis (Acciai et al.,
2016; Cohen et al., 1994). Subneuronal structures includ-
ing somata, spines and boutons have also been segmented
and analyzed from images (Iascone et al., 2020; Cheng
et al., 2019; Bass et al., 2017; Gala et al., 2017; Yan et al.,
2013; Peng et al., 2010; Liu et al., 2019). This is a chal-
lenge of high community interest. A number of algorithms
have been examined and compared against each other in
public initiatives, e.g. DIADEM (Gillette et al., 2011) or in
the global collaborative BigNeuron initiative (Peng et al.,
2015). However, most existing methods are applicable only
to smaller image datasets and partial neuronal structures.
For individual mammalian brain datasets, technologies that
can handle teravoxels of image volume to trace millimeters
long neurite fibers emerged only recently, including TeraFly
(Bria et al., 2016), UltraTracer (Peng et al., 2017), BigData-
Viewer (Pietzsch et al., 2015), TeraVR (Wang et al., 2019),
and GTree (Zhou et al., 2021). Manual and semi-automatic
methods were used to trace neurons’ full skeletons in
Janelia’s MouseLight project (Winnubst et al., 2019). Yet,
it is largely an open problem how to scale up all these
approaches to handle petabyte-scale multi-morphometry
challenge that is becoming a compelling reality as whole-
brain screening projects involving increasingly larger and
more complicated animal models are being carried out
internationally (BRAIN Initiative (https://braininitiative.
nih.gov/), Blue Brain Project (Markram, 2006), etc.).

Methods
Hardware and Software Platform

Our system is designed for the task of multi-morphometry
data generation from petabyte-scale whole-brain imaging
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database. Built upon customized hardware infrastructure and
software tools, the system is capable of organizing whole-
brain imaging datasets, generating multi-morphometry data,
managing data and workflow, and visualization and analysis
of the generated data (Supplementary Fig. 1).

The hardware infrastructure includes the following parts.
VR-equipped annotation workstations are used for data
visualization, interactive neuron reconstruction, proofread-
ing, etc. A petabyte-scale storage is configured to store the
whole-brain imaging datasets, while the multi-morphometry
data is managed using cloud-based storage. A computing
cluster is deployed for parallel execution of batch work
assignments. Moreover, a wall-mounted display array is also
available for monitoring the data generation status. The stor-
age server and the computing cluster are connected with a
100 Gbps wired local area network for peta-scale data stor-
age and parallel computing. The annotation workstations,
cloud storage, and monitor system reside in a 10 Gbps local
area network.

There are four major software components in the Mor-
phoHub software package. The MorphoHub-DBMS is
the core of the entire system which is responsible for the
coordination of the overall data generation process. The
DendriteGenerator is in charge for parallel generation of
dendritic arbors. The LOGenerator is useful for creating
compact image representation of the reconstructions. The
BoutonGenerator is capable of automatically detection of
the synaptic boutons located on axons. These components
are developed as plugins of Vaa3D (Peng et al., 2014), thus
making MorphoHub cross-platform and deployable on vari-
ous operating systems.

Hardware Configuration

VR-equipped annotation workstations are with Intel Core
i7-7700 CPU @ 3.60 GHz, 64 GB memory, NVIDIA
GeForce GTX1070 GPU, Windows 10 64-bit edition, and
HTC Vive VR headsets. A storage server with 1.6 PB storage
capacity and 256 GB memory is used as the Petabyte-scale
data storage. A high-performance server with 7 computing
nodes and 196 CPU kernels is used as the computing cluster.
The wall-mounted display contains a 5*3 array of 28-inch
1920 x 1080 pixel displays and a controller workstation.

MorphoHub-DBMS

The MorphoHub-DBMS manages the generation of multi-
morphometry data by either collaborating teams or auto-
matic routines. All the morphometry data files are organized
in the MorphoHub-Database, where they follow consistent
naming rule and are assigned with unique IDs. The valid-
ity of the database is monitored by an error checking rou-
tine running in the background. Should there be any issue
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regarding to the morphometry data files, and error message
would be generated and displayed on the screen wall system.

During the multi-level generation of the neuron mor-
phometry data, multiple brains, neurons, annotators are
involved. Also, for each neuron, the L1, L2, and L3 data,
together with a number of intermediate data levels are
produced. The MorphoHub-DBMS maintains the correct
working state for all the neurons and supports a number of
operations, including commit (submitting a reconstruction to
a higher level), rollback (sending a reconstruction to a previ-
ous level), proofreading (requesting for quality check of the
reconstruction), etc. Besides, the MorphoHub-DBMS also
provides supports for user management and task assignment.
All the data are periodically synchronized with private or
public cloud-based storages for version control, data sharing
and collaboration.

A screen wall display system is connected with Morpho-
Hub to present useful information for the ongoing morpho-
metry generation. On the display array, some of the latest
reconstructed neurons are displayed; the status of the data
repository is tracked; preliminary analysis results are also
generated dynamically to provide potential insights of the
data.

Generation of Somata and Dendritic Arbors
(DendriteGenerator)

The annotators browsed each whole brain image in D62
using TeraFly and pinpointed soma locations. 2-D maxi-
mum intensity projection (MIP) images were generated for
each soma-centered region for further validation. Then,
centering at each identified soma, a local image volume of
1024 % 1024x512 was cropped from the from highest resolu-
tion of whole brain image. Next, the APP2 (Xiao & Peng,
2013) algorithm was invoked for the tracing of dendritic
arbors. In particular, a number of background thresholds (15,
20, ..., 40) were adopted for each tracing routine. The tasks
were submitted to the cluster server for parallel computation.
The results were retrieved and stored only if the execution
time was under 30 s. Then, we leveraged the gold-standard
datasets, e.g., a set of manually annotated and validated den-
dritic arbors, to form rules for further screening the auto-
matic reconstruction results. The [min, max] interval of the
following five features of the dendritic arbors were consid-
ered, including 'Tips', 'Length’, 'Max Path Distance', 'Aver-
age Bifurcation Angle Remote', and 'Max Branch Order'. An
automatic tracing result qualified if more than four features
conformed with the gold-standard. In case more than one
tracing qualified for a certain soma location, the result with
larger overall tracing length was selected. In visual screen-
ing, tracing results were removed when multiple cells were
connected.

Generation of L1 and L2 Data

In MorphoHub, we use a multi-level approach to reconstruct
neuron morphology: the L1 reconstruction contains the den-
dritic trees and the long axonal projections, while the struc-
tures of distal axonal arbors are annotated in the L2 recon-
struction. The generation of either L1 or L2 data requires
several rounds of checking and correction and is essentially
an iterative procedure. In each iteration, there is a generation
step (GS) and a validation step (VS) (Supplementary Fig. 7).
In the generation step, an annotator tries to reconstruct the
neuron’s morphology until the person considers that the
reconstruction meets the standard of the current level, i.e.,
L1 or L2. Then, in the validation step, a second annota-
tor examines the reconstruction while labeling the over-
traced structures (false positive, FP) and missing structures
(false negative, FN) and confirming the correct structures
(true positive, TP). After that, the precision rate (P =TP/
(TP +FP)) and recall rate (R =TP/ (TP 4+ FN)) can be cal-
culated. If the F1 score =(2*RP/ (R +P)) is greater than the
preset threshold, the current level is considered finalized.
Otherwise, another iteration is needed. Normally, the recon-
structions of both L1 and L2 converge in two iterations.

Calculation of the Overall Reconstruction Accuracy
in Random-Sampling Simulation

The reconstruction of a neuron’s morphology, normally start-
ing from the soma and gradually extending all the way to
the remote terminals, is essentially a consecutive decision-
making process. Thus, it is likely to suffer from the prob-
lem of error propagation, i.e., the reconstruction errors at
upstream structures will affect the downstream structures. We
assume that for each primitive structure in neuron reconstruc-
tion, e.g., a neuronal segment, there is a constant probability
p for error occurrence. Besides, if error occurs at some struc-
ture, it will also propagate to all its child structures. During
the validation step, reconstruction errors could be identified
and corrected. However, new errors would still be likely to
be introduced at the given chance. Based on such assump-
tions, we could calculate the overall reconstruction accuracy
after n rounds of iterations. With the L.1-L2 leveled protocol,
we assign n/2 iterations for L1 reconstructions, and other
n/2 iterations for L2. With the one-level strategy, we simply
repeat the generation-validation steps n times for the recon-
struction of whole neuron. The simulation can be carried out
several times to achieve stable results.

L3 (Bouton) Generation (BoutonGenerator)
As a typical L3 data, the bouton distributions are gener-

ated based on the guidance of L2 axonal arbors. Boutons are
mainly located at distal axonal arbors rather than the long
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axonal projections. We used a four-step approach to extract
L3 (bouton) data automatically. Firstly, the neuronal tree
representation of L2 data is resampled using a fixed-length
interval. In this work, the interval is set to be 4 microns.
Secondly, for each node in the neuronal tree, the correspond-
ing image intensity value is retrieved from the whole brain
datasets. Since the nodes cannot be guaranteed to locate at
the centers of the putative boutons, the nodes are allowed to
be locally shifted to the maximum intensity position within
a small area (e.g., 2 voxels). We assume that the intensity of
imaging signal along axons obeys the 1-D Gaussian distri-
bution and a bouton site tends to have intensity jump com-
pared with its neighboring nodes. Thus, the third step is to
calculate the intensity jump threshold for each small image
block (e.g., 128 x 128x123) as the standard deviation of the
block, and extract bouton candidate in a block-wise manner.
Finally, in the last step, we remove any possibly duplicated
bouton site if it is too close to its neighboring site (e.g.,
within 5 voxels).

Generation of the L0 Imaging Data (LOGenerator)

The LO imaging data is generated based on the correspond-
ing morphometry data, e.g., L1 data, L2 data, or even a den-
dritic arbor. The LO data contains the image regions that
cover all the anatomical structures of the morphometry and
is organized in a TeraFly-compatible hierarchical form, just
as the whole-brain imaging data. The approach to generate
LO data is described below. For a given neuron, each fun-
damental morphological element, i.e., nodes and edges, is
examined. The local image block in the whole-brain dataset
that contains the element is found and marked as “relevant”.
Then, all the “relevant” images are combined into the union
set from which the compact LO data are finally generated by
building a multi-resolution image hierarchy.

Quality Control Workflow and Public Release

The reconstructions are concurred to be released after fol-
lowing the single-tree criterion, which includes correct
types, no loops, and no trifurcation or multi-furcation. Com-
bination of manual modifications and automatic algorithms
were used to control the quality of reconstructions. Auto-
matic routines were invoked to detect any presence of gaps,
loop and multi-furcation, followed by manual correction of
such issues. Other procedures include examining the recon-
struction quality at branch terminals and checking whether
all the neurites are centered at image signals. After 2 to 3
rounds of checking, the reconstructions are then ready for
ingestion and mirroring in open-source repositories such as
NeuroMorpho.Org (http://neuromorpho.org/).
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Results

We attempted this petabyte (PB)-scale whole-brain com-
puting challenge by introducing a technology that involves
a hardware platform that is able to handle petabytes of data
storage, sharing, computing and visualization, a software
platform called MorphoHub that can utilize such hard-
ware platform, and most importantly, a mechanism to scale
up the synergized automated computation and multi-user
collaboration for effective validation and correction. Our
method is centered around reconstructing the multi-level
information of single neuron’s morphology (Fig. 1a) at the
whole-brain scale for a number of brains. The MorphoHub
software package is able to streamline the workflow of
imaging data management, visualization, reconstruction
and collaboration, and data sharing (Fig. 1b, “Methods”).
Using this approach, we extended several state-of-the-art
methods to the PB-scale (Supplementary Table 1) and pro-
duced multi-morphometry data from such massive image
database (Fig. 1¢). Our method allows a smooth transition
from manual and interactive morphometry acquisition to
increasingly routine work done by automatic algorithms
as we show below.

A key component of our method is a three-level (L1, L2,
and L3) reconstruction approach (Fig. 1a). We incrementally
reconstruct morphological components of neurons, includ-
ing somata, dendrites, axons, spines and boutons, only when
such information can be produced faithfully and affordably.
Specifically, an L1 reconstruction contains the full dendritic
arbor and the skeleton of all axonal neurite tracts, excluding
the fine structures of distal axonal arbors (Figs. 1a and 2).
An L2 reconstruction contains the complete structures of
all neuronal arbors (Figs. 1a and 2). An L3 reconstruction
contains the identification of two key elements of synaptic
connectivity, dendritic spines and axonal boutons, as well as
other structures of potential interest (e.g., specific topology
of axonal branching patterns, modeling of specific neuronal
compartments’ shape) (Figs. l1a and 3).

The proposed multi-level reconstruction method is
generic and scalable to single neuron datasets of arbitrary
size if proper data structure and data workflow are in place.
To provide such capability for a real PB-scale computing
environment, we developed MorphoHub to manage all data
flow and processing procedures in an integrated way (Fig. 1b
and Supplementary Fig. 1, “Methods”). MorphoHub handles
four heterogeneous data types, including image volumes,
neuron morphology, meta-data of user interactions, and
data management (conversion, storage, transferring/shar-
ing) schemas, for a PB-scale database. We also engineered
a universal application interface (Fig. 1b and Supplemen-
tary Fig. 2) in MorphoHub so that it could invoke additional
image analysis and validation tools when needed.
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Fig. 1 Multi-morphometry data generation from whole-brain imaging
datasets a An illustration of the multi-level reconstruction approach.
From a whole-brain image containing trillions of voxels (top left), the
Level-1 (L1), Level-2 (L.2), and Level-3 (L3) data are reconstructed in
sequence (bottom). Moreover, a concise Level-0 (LO) imaging data is
also generated based on the reconstructed morphometry (top right) b

To demonstrate the capability of this approach, we
built an image database called D62 consisting of 62 whole
mouse brain images. D62 has in total 713.35 teravoxels,
1.43 petabytes in native image space, and 973 terabytes in
compressed file space (Supplementary Data 1). MorphoHub
ran smoothly on D62 and allowed us to precisely pinpoint
somata of 50,233 neurons using TeraFly (100% accuracy
validated by independent annotators). For each neuron, we
then reconstructed the dendrites automatically (Fig. 3a,
“Methods”), followed by feature-based screening and vis-
ual validation (Fig. lc, “Methods”). Using this workflow,
we produced traceable dendritic results of 11,322 neurons.
Due to the scale of the problem, similar results were hard to
obtain using other software.

For each of the sparsely labeled neurons whose long
axon projection could be separated, we first produced an

The MorphoHub system for the generation of multi-morphometry data,
management and visualization of all related data and workflow, data
sharing and extended functions ¢ Examples of the multi-morphometry
data reconstructed from one Brain (Brain id: 18,454). From top to bot-
tom are the somata, dendrites, L1, L2, and L3 data, respectively, with
zoom-in panels for red arrows shown on the right

L1-reconstruction corresponding to the key skeleton of a
neuron along with its dendrites and axonal projection tar-
gets. We then requested human annotators to validate each
L1-reconstruction. The resulting L1-reconstruction was then
further refined to complete the L2-reconstruction that also
added the distal axonal arbors projecting far away across var-
ious brain regions. In this study, we focused on reconstruct-
ing the full morphology of 1,050 neurons whose somata
situate in the thalamus, striatum, and cortical regions of
mouse brains (“Methods”). Each L1-L2 pair of the com-
pleted neuron reconstructions were validated by at least two
annotators. This dataset, called R1050, was used to further
examine whether or not the core multi-level reconstruction
method would make sense.

We compared the L1 and L2 morphology in R1050. On
average a pair of L1-L2 reconstructions have five to six fold
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Fig.2 Comparisons of L1 and L2 data. a and b Two features (a: total
length; b: branch number) of L1 and L2 data. Neurons are from three
brain regions (TH (Thalamus): 705 neurons; CTX (Cortex): 23 neu-
rons; STR (Striatum): 322 neurons). ¢ Comparison of the projection
targets of the L1-L2 pairs. Horizontal axis: number of neurons. Ver-
tical axis: overlapping ratios of projection targets of L1-L2 pairs. d

difference in terms of their length and number of branches
(Fig. 2a and b). However, a Sholl analysis (Langhammer
et al., 2010) indicates that the L1-L2 pairs share branching
patterns in dendrites and differ only in the additional axonal
regions of L2 (Supplementary Fig. 3). Additionally, 95%
of the corresponding L1 and L2 reconstruction-pairs have
at least 75% overlap in their projecting target brain-regions
(Fig. 2c¢). Finally, we used random-sampling to simulate
the potential reconstruction error that would be seen if the
L1-L2 leveled protocol were not used (“Methods”). The
L1-L2 reconstruction protocol can avoid reconstruction
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error of a brute-force approach that would reconstruct distal
arbors directly without first validating the L1-reconstruction
(Fig. 2d). In summary, Fig. 2 shows that reconstructing L1
first without incurring the great complexity in producing the
L2 data already offers an efficient way to analyze the key
branching structures and the ballpark projection pattern of
single neurons. The reconstructions in each level state were
also transmitted and stored efficiently and safely.

On the other hand, the rich detail in the axonal arbors of
the L2 reconstruction of a neuron as demonstrated in Fig. 2
also serves as the basis of finer-resolution morphometry.
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For axonal arbors in R1050, we further generated the L3
morphometry by detecting putative synaptic sites (boutons)
of neurons at very large scale (“Methods”). Due to the pres-
ence of axonal fibers, we are able reduce the conventionally
required 3-D blob-segmentation problem for bouton detec-
tion to a much simpler 1-D Gaussian model fitting problem,
that can be solved in both high accuracy and high speed. We
fit a Gaussian kernel to the axonal varicosities and detected
1.9 million boutons (Fig. 3b-d). Random inspection of the
results indicated that the detection precision was above
95% (Supplementary Fig. 4). We also found that nearly
80% of the average spacing of adjacent boutons along an
axon ranged from 5 to 20 um (Fig. 3c). The L1-L2-L3 trio
morphometry produced using this method allows studying
the complete distribution of single neurons, their projection,
and potential connectivity patterns at whole brain scale. A
detailed analysis of the patterns in and statistics of these
datasets will be reported elsewhere.

All multi-morphometry data produced were also regis-
tered to the Allen Common Coordinate Framework (CCF)
(Wang et al., 2020) to see how the distributions of each data
level correlate with others (Fig. 4). In this way, various brain
regions (the white colored regions), dendrites, axons, and

02 025 03 035 04
# Boutons per um

tons along the axonal skeletons. Red bar highlights the range [0.05,
0.2] d Examples of detected boutons. Upper: a local image region
containing an axonal cluster. Bottom: putative boutons shown in dis-
tinct colors

boutons can all be identified (Fig. 4a-e). As a result, we
output a summary matrix with rows representing neurons,
columns representing a unique CCF parcel, and numerical
entries expressing, for each neuron and corresponding par-
cel, the axonal and dendritic length, the number of boutons,
and the (binary) presence of soma. Such representation lends
itself to highly informative quantitative analyses, such as
pairwise probability of directional connection between neu-
rons (dot product of presynaptic axonal values and postsyn-
aptic dendritic values) and projection similarity (arccosine
distance between axonal values of two neurons). Figure 4
shows that the distributions of these neuronal entities do not
correlate globally. Instead, they exhibit regional enrichment
of which the pattern is hard to observe when only local brain
areas are analyzed.

For PB-scale computing, the speed of data I/O for stor-
age and data sharing across networks (Internet or intranets)
becomes more critical than in applications at small scale. It
is essential to reduce data volume without compromising
visualization and analysis of such large data. We observed
that an L1-L2-L.3 morphology trio of a neuron will always
be sparse and that the spine and bouton information in the
L3 data could be described using a neighborhood around the
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Fig.4 Visualization of the multi-morphometry data in R1050 a The
color-coded joint distribution of dendrites, axons, and boutons. From
top to bottom: horizontal view (slice no. 165), coronal view (slice no.
335), and sagittal view (slice no. 148). Colors indicate the densities
of dendrites, axons, and boutons normalized to the standard RGB
color space. Scale bar: 2 mm b Individual distributions of somata in

neuron skeleton in preceding levels. To utilize this observa-
tion, we developed a compact LO representation of a neuron
for effective imaging data management, sharing, and compu-
tation (Fig. 5a, “Methods”). The key idea is that the LO data
of a neuron represents a tightly bounded image region that
covers the L1-L.2-L.3 trio area. Because dendritic spines typi-
cally attach dendritic fiber orthogonally, and axonal boutons
scatter along axons, for any given L2 (or L1) skeleton we
conveniently extracted a series of piecewise 512 x512x512-
voxel 3-D image-tiles around the skeleton to cover all spines
and boutons and at the same time to allow fast image file I/O.
In this way, an LO representation identifies an image sub-
region that contains all parts of a specific neuron.

For R1050 reconstructed from D62, on average the L0
data generated based on an L1 skeleton contains more
than 77% of that generated based on the corresponding L2
reconstruction (Fig. 5b). In addition, the L0 data of a neuron
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423 8.45 12.68 16.91

Dendrite length (X102 mm)

3.15 4.20 0 5.94 11.88 17.82 23.75
Axon length (x10* mm)

# Boutons (X10%)

R1050. Each inset corresponds to the combination of 25 consecutive
coronal slices, in which the brain regions were colored according to
the densities of somata. The darker the color, the higher the density
c-e Similar visualizations for dendrites, axons, and boutons in R1050,
respectively

typically occupies three orders of magnitude less image vol-
ume compared to the whole brain image (Fig. 5c). The LO
data of the largest neuron in this work has ~ 80 gigavoxels,
while the mean value and standard deviation of the volume
of LO data of 1,050 fully reconstructed neurons are 6.75
and 5.94 gigavoxels, respectively (Fig. 5d, Supplemen-
tary Table 2). Practically, even the union of all LO data of
neurons, denoted as Super L0, in a sparsely labeled brain
still has 1 to 3 orders of magnitude fewer voxels compared
to the total volume of the brain (Fig. 5¢). In this way, the
multi-morphometry framework allows thousands of fold bet-
ter efficiency in both storing and transferring the essential
image data and quantitative shape information of neurons.
This utility greatly simplifies the previously challenging data
sharing task. Indeed, without accelerated content delivery,
currently it is possible to transfer the LO data in R1050
between the data production center (SEU-ALLEN) in Asia
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Fig.5 The LO representation of imaging data a The LO image (shown
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overlaid with its L2 reconstruction b For neurons in R1050, the ratio
of LO image volume generated from L1 data over that generated from
L2 data ¢ Comparisons of the size of whole-brain images, the aver-

and one data releasing facility (BICCN Image Library, Pitts-
burgh supercomputing center) in North America (Fig. 5d).
This direct data sharing replaced a previous way to bulk ship
hard drives containing the massive amount data back-and-
forth across continents.

With the LO-L1-L2-L3 quadruple data, we further
enhanced the scale and faithfulness of our multi-morphometry
produced in two ways. First, since the LO data has a much
smaller volume and thus is much easier to share across net-
work, we developed a collaborative mode that interconnects
a number of formerly autonomous TeraFly/TeraVR users to
synergistically work on the LO data directly (Supplemen-
tary Fig. 5). This method parallelizes the workflow and thus
improves the data production rate. The cooperative work
of multiple annotators also elevates the faithfulness of the
resultant morphometry. Second, we used a deep learning
network to learn from the LO-Lx (x=1,2,3) pair. The trained

20 30 40 50 60 70 80
L0 volume (gigavoxels)

age size of LO data, and the size of the “super LO-data” (union of
all LO data of neurons). Error bar: SD d Time for transferring 1050
LO images between two research centers in Asia (SEU-ALLEN) and
America (BIL)

model was used to detect specific neuronal features, such as
neurite skeleton or axonal terminals (Supplementary Fig. 6).
This process can be repeatedly optimized based on progres-
sively more and more accurate LO-L1-L2-L3 quadruple data.
Such automation also increases the data production rate for
PB-scale computing.

Discussion

In this study, we demonstrated a robust PB-scale informatics
platform to generate large-scale single neuron reconstructions
suitable for multi-scale biological analysis. Our approach
has several advantages: (1) efficient multi-level production
and management of whole-brain neuron reconstructions; (2)
conducting morphological analysis and cell typing globally
and at multi-resolution; (3) enabling the investigation of the
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convergence or divergence of neuronal projections by ana-
lyzing distribution of neuronal arbors across brain regions;
(4) comparison of various neuronal elements and sub-
structures with respect to the types of cells. Taken altogether,
our whole-brain multi-morphometry approach provides a
framework to produce hierarchical datasets that synchronize
brain anatomy, single neuron morphology, sub-neuronal
structures, and potential pre-synaptic sites, all mapped onto
a standardized atlas. Our method will be useful for further
studies of neuronal circuits based on whole-brain imaging,
not only for mouse brains but also for other model systems
such as monkey brains.

Our work furthers previous effort to use light microscopy
(LM) to visualize and detect synapses around neurite tracts
labeled by genetic markers (Iascone et al., 2020; Kim et al.,
2012) or antibodies (Micheva & Smith, 2007), which were
limited to partial neuronal structures in local brain regions.
In this study we used fMOST data as a showcase and for
putative synaptic sites we have focused on axonal boutons.
As a generic computational framework, our approach is
applicable to various datasets produced with different meth-
ods and collected with different imaging modalities.

Of note, our method stores both the original neuronal
tracing in the native coordinates of the individual brain
specimen, allowing efficient extraction of precise geometric
measurements (e.g., synaptic distance from the soma along
the axonal path) as well as a registered version of the same
morphology mapped to CCF. The registration of the axonal
reconstructions is efficiently expressed by augmenting each
tracing coordinate, from the center of the soma all the way
to the boutons, with the unique identifier of the anatomical
parcel in which it is embedded (Nanda et al., 2018). On the
one hand, such compact representation immediately ena-
bles real-time computation of potential circuit connectivity
(Rees et al., 2017). On the other, it provides critical infor-
mation regarding neuronal identity by encoding its somatic
region and quantitative projection targets. This information,
together with the specification of essential details regarding
the brain specimen and imaging modality, fulfills the rec-
ommended requirements for standard metadata description
of neuromorphological reconstructions (Bijari et al., 2020).
Thus, our IT infrastructure is seamlessly compliant for effec-
tive pipelining with the NeuroMorpho.Org public data shar-
ing platform, ensuring maximum impact through expanded
community outreach (Ascoli et al., 2017).

Another line of major current effort is to reconstruct
dense neurite tracts and synapses, or “‘connectomes’, using
electron microscopy (EM) followed by computationally
intensive 3D image segmentation and modeling, such as the
MICRON project (Yin et al., 2020) and the Janelia FlyEM
project (Xu et al., 2020). For mammalian brains, EM-based
approaches are still restricted to local brain regions due to
their very high resolution and various challenges in sample
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preparation and imaging. Our method complements the EM-
based approach in whole brain scale profiling. Importantly,
the lower cost of LM enables one to integrate morphometry
information from many brains that is crucial to understand
the variability of neurons and their circuits across brains and
conditions. In comparison with EM-based reconstruction of
individual neurons, our work reconstructs the whole mor-
phology, including (1) soma locations; (2) dendritic arbors,
which entails the capacity for and locations of synaptic
inputs; (3) axonal trajectories with collateral projections and
terminal boutons, which indicate innervation of projection
targets. Together, such information is directly relevant to
neuronal function.

The multi-level reconstruction approach is being
enhanced in various ways. In addition to various worksta-
tion/PC clients, virtual reality consoles, super-computing,
and big-display walls that are already integrated in our soft-
ware MorphoHub, mobile applications (APPs) for more
intelligent and automated neuron tracing are being devel-
oped and added onto our software. We are also deploying
MorphoHub for data servers in the cloud and scaling up the
capability for concurrent data serving of distributed users.
We hope these engineering efforts would lead to a new
globally accessible platform that has potential to bring the
current productivity to the next level, especially addressing
challenges in completing neuron morphometry more effi-
ciently, producing more fine-scale morphometry such as
synapses with their shapes and statistics, integrating more
automation through the use of Al, sharing of imaging data
remotely at affordable cost, and international collaboration
of neuroanatomists and other interested users.

Conclusion

Neuronal morphology is an essential component of cell type
identity in the brain and an essential determinant of con-
nectivity and circuit function. Large scale accurate neuronal
profiling necessitates advanced methods in computational
processing to effectively manage storage and bandwidth
for collaborative segmentation and annotation. The data in
this study shows our petabyte-scale computing framework
is able to provide a solution to modern anatomic workflow
requirements that are now demanded for very large-scale
morphometry.

Information Sharing Statement

The whole brain image datasets are released under BICCN’s
Brain Image Library (BIL) at Pittsburgh Supercomputing
Center. The multi-morphometry datasets can be downloaded
at https://github.com/SD-Jiang/MorphoHub/releases/tag/
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Jiang/MorphoHub.
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