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NeuroXiv: AI-powered open databasing 
and dynamic mining of brain-wide neuron 
morphometry
 

Shengdian Jiang    1,2,6, Lijun Wang1,3,6, Zhixi Yun    1,2,6, Hanbo Chen    4,6, 
Lijuan Liu    1,3  , Jianhua Yao    4   & Hanchuan Peng    5 

Neuron morphology has been extensively reconstructed at the whole-brain 
scale by various projects in recent years. Here, to facilitate interactive 
exploration in a standardized and scalable manner, we introduce NeuroXiv 
(neuroxiv.org), a large-scale database containing 175,149 reconstructed 
neuron morphologies mapped to the Common Coordinate Framework 
Version 3 (CCFv3). In addition, NeuroXiv incorporates an AI-powered mining 
engine (AIPOM) for dynamic, user-specific data mining, delivering enhanced 
performance via a custom client program.

Neuronal morphologies, characterized by their diverse branching 
patterns and anatomical arborization, provide critical insights into 
cell types and brain functional networks1. Recent advancements, 
including sparse labeling techniques2, high-resolution brain imaging3, 
terabyte-scale image handling4 and neuron tracing methods5, have 
enhanced our capability to digitize brain-wide neuron morphologies. As 
a result, there has been a substantial increase in the volume of publicly 
accessible neuron morphologies, which supports various quantitative 
analyses, including the morphological characteristics of individual 
neurons6, dendritic microenvironments7, neuron typing8 and organi-
zational principles of neuron projections9. However, a remarkable gap 
exists: how do we harness these valuable datasets from diverse sources 
for new discoveries while addressing dynamic needs throughout the 
development process?

Current data dissemination solutions for neuron morphology9–13 
generally fall into two categories: browser-based platforms, such as 
Neuron Browser (mouselight.janelia.org) and Digital Brain (mouse.
digital-brain.cn), and archiving platforms, including Brain Image 
Library (brainimagelibrary.org), NeuroMorpho.Org (neuromor-
pho.org) and Neurons Reunited Portal (neuroinformatics.nl/HBP/
neuronsreunited-viewer/). Archiving platforms provide dataset 
downloads and a broader range of data, while browser platforms offer 
exploration tools but limited access. The Neurons Reunited Portal 
stands out by aggregating data from multiple sources and mapping 

all morphologies onto the Common Coordinate Framework (CCF) for 
unified visualization. Large-scale offline analyses face challenges such 
as dataset harmonization, CCF alignment, metadata extraction and 
transforming neuronal features into insights, requiring both domain 
expertise and advanced coding skills (Extended Data Table 1 and  
Supplementary Notes 1 and 2).

We introduce the NeuroXiv platform (neuroxiv.org), currently 
hosted on Amazon Web Services (AWS), designed to address chal-
lenges in databasing and mining brain-wide neuron morphometry. 
Building upon the foundational work of the Allen Brain Atlas14 and  
NeuroMorpho.Org, we have expanded efforts to establish a stand-
ardized atlas-oriented database of neuron morphometry (Fig. 1a). 
To address challenges associated with large-scale analysis of neuron 
morphology, we have developed the AI-Powered Open Mining (AIPOM) 
engine. This engine offers functionalities such as searching and visual-
izing neuron morphometry, enabling analyses including data statistics, 
cell typing and connectivity studies. Crucially, it incorporates advanced 
capabilities, such as generating artificial intelligence (AI)-driven mining 
reports (Figs. 1a and 2a).

We established a server-side data processing pipeline capable of 
continuously aggregating publicly available datasets into our database 
(Fig. 1b). Interoperability is maintained through standardization of 
neuron morphology in the widely used SWC (named after its initial 
developers Ed Stockley, Howard Wheal and Robert Cannon) format15. 
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method (Supplementary Table 2). The resource provides access to 
the most comprehensive atlas of cell types based on soma anatomical 
locations, encompassing 12 major gray-matter divisions and including 
data from 292 out of 316 brain structures in the Allen Reference Atlas 
ontology (Fig. 1c).

Our database offers several advantages for neuron morphology 
research. By mapping neuron morphologies from diverse sources 
onto a unified coordinate system, it enables rapid access to neuronal 
data without the need to switch between different sources. This data 
aggregation facilitates detailed, data-driven analyses of neuronal mor-
phological characteristics and enhances the study of brain connectivity 
at the single-cell level. Specifically, we have identified a greater num-
ber of incoming neurons that extend their arbors into specific brain 
regions (Extended Data Fig. 2a) and have uncovered additional pro-
jection combinations of target regions formed by individual neurons  
(Extended Data Fig. 2b). Furthermore, the database’s enhanced 

Reusability is ensured by initially mapping neuron morphologies into 
the Common Coordinate Framework Version 3 (CCFv3)14, a widely 
recognized brain atlas for registering neuroanatomical data. We sys-
tematically document comprehensive metadata, encompassing basic 
information, morphological features and anatomical arborization 
characteristics of neuron morphology (Supplementary Table 1).

We demonstrate the feasibility and scalability of the databasing 
method by consolidating data from diverse sources, including our 
SEU-ALLEN datasets6,7 and third-party examples9,10,16,17, culminating 
in a large database of brain-wide neuron morphologies (Fig. 1a and 
Extended Data Fig. 1). The database features over 175,149 atlas-oriented 
reconstructed morphologies of individual neurons derived from more 
than 500 mouse brains. Importantly, it contains 19,406 fully traced 
axonal morphologies. Each neuron reconstruction is characterized 
by its structural components (soma, axon and dendrite), alongside 
metadata documented using a common standardized description 
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Fig. 1 | Overview of NeuroXiv, an open, AI-assisted database for interactive 
brain-wide neuron analysis. a, NeuroXiv is founded on three pillars: atlas-
mapped neuron morphology, AIPOM and extensible open access. The AIPOM 
engine enables users to efficiently and flexibly retrieve neuronal data and 
to explore neuron types and connectivity patterns, and offers an intelligent 
mining tool for generating comprehensive data mining reports. b, The dataset 
standardization process in NeuroXiv is performed server-side, which is crucial for 

ensuring data reusability and interoperability. This process involves formatting 
raw morphology files into the standard SWC format and storing them accordingly. 
In addition, the data are mapped to the same atlas space, and rich metadata are 
extracted to enhance the dataset’s utility. c, NeuroXiv has established the largest 
and most comprehensive dataset of neuron types, covering a wide range of brain 
regions including the TH, STR, isocortex, HPF and CB. A full list of abbreviations 
for all brain structures in this study is provided in the Methods.
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indexing system allows improved retrieval of neurons based on spatial 
proximity, morphological similarity or shared arborization patterns 
(Extended Data Figs. 2c,d and 3). This advanced indexing opens up 
new research opportunities, such as investigating whether spatially 
adjacent neurons consistently share similar morphological or projec-
tion characteristics (Extended Data Fig. 3a,b).

The AIPOM engine streamlines the knowledge development work-
flow on the established neuron morphometry database by integrating 
large language models (LLMs), which have rapidly advanced in recent 
years and demonstrated effectiveness in various domains18 due to their 
robust text comprehension capabilities. AIPOM enables users to define 
data cohorts using natural language or rule-based queries, with the 
LLM-based tool generating comprehensive reports on morphology, 
connectivity and cell type comparisons (Fig. 2a and Supplementary 
Fig. 1). NeuroXiv also offers interactive tools for visualizing quantita-
tive results and exploring complex neuronal structures (Extended Data 
Fig. 4 and Supplementary Figs. 2 and 3).

We demonstrate the broad applicability and flexibility of our data 
search tool through several showcases of querying primary motor area 

(MOp) neurons (Fig. 2b). We first illustrate that searches can be con-
ducted using an LLM-based method, enabling users to query for spe-
cific neuron types, neurons with particular structures (such as axons 
or dendrites) or those exhibiting specific projection patterns through 
natural language inputs (Supplementary Fig. 4). Notably, based on the 
established correspondence between function and neuron location 
(Supplementary Table 3), users can define neuron retrieval on the basis 
of functional information. We then show that precise searches can be 
performed by setting customized criteria based on neuron metadata 
(Extended Data Fig. 5a–c and Supplementary Figs. 5 and 6), such as 
searching for neurons with long-range projection patterns or those with 
specific projection patterns (Supplementary Fig. 7). NeuroXiv further 
provides a database interface enabling users to index specific neurons 
via an upload function, facilitating its use as a downstream exploration 
tool following user-defined neuron classification (Supplementary 
Fig. 8). Moreover, the search tool supports advanced capabilities such 
as similarity searches to identify neurons with comparable morpho-
logical features and arborization patterns (Extended Data Fig. 3a,b and 
Supplementary Fig. 9), as well as neighboring neuron queries to explore 
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Fig. 2 | AI-powered engine for open analysis and mining of neuron data. 
a, A schematic diagram of data analysis and mining within NeuroXiv. The 
NeuroXiv database provides extensive morphology data, along with detailed 
morphological features, connectivity patterns and interdata correlations. The 
AI-powered search tool assists users in extracting relevant data of interest. 
Users can then interactively visualize the retrieved data on an atlas viewer and 
explore data features in depth. In addition, NeuroXiv includes a MoE module 
that automatically generates reports to describe data characteristics and 
uncover patterns within the data. b, The showcases of data search in NeuroXiv 
demonstrate five common use cases. Users can search data using natural 
language queries, followed by searches based on the distribution of specific 
features provided by the user. In addition, data can be retrieved using a  

user-supplied list of neurons, further enhancing the flexibility of data searches. 
c, The interactive analysis showcase in NeuroXiv presents an example where 
users can study arbor-level connectivity patterns. The input and output regions 
are determined by the spatial proximity of neurons within the database and the 
retrieved data, allowing detailed exploration of neuronal connectivity.  
d, A comparison of interactive analysis time between the two platforms focuses 
on a shared cell type analysis scenario. The time measurement includes the entire 
process from data retrieval to the rendering of analysis charts. e, MoE reports 
were evaluated against four LLMs (Qwen-Max, Mistral-Large, GLM-4 and GPT-4o) 
for accuracy and text length across 291 random analysis cases. Our MoE showed 
higher accuracy and conveyed the same information using shorter text. Data are 
presented as mean values ± s.d.
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arbor-level connectivity within the brain (Extended Data Fig. 3c,d and 
Supplementary Fig. 10).

We highlight the interactive analysis capabilities of AIPOM  
through two studies. In the first study, users can identify which neuron 
types in the database provide input to a single neuron and determine 
the brain regions that receive projections from that neuron (Fig. 2c). 
In the second study, focusing on projection patterns, we use ventral 
posteromedial nucleus (VPM) neurons from our database as an example 
(Extended Data Fig. 6). These VPM neurons, sourced from two datasets, 
exhibit axonal arbors that extend across the caudoputamen into multiple 
cortical regions, including secondary motor area (MOs), MOp, primary 
somatosensory area (SSp) and supplemental somatosensory area (SSs), 
encompassing various projection subtypes (Extended Data Fig. 6a). In 
addition, our visualization tools allow users to observe the selectivity of 
different projection subtypes across cortical regions and layers (Extended 
Data Fig. 6b,c), as well as compare soma distribution and morphological 
features among these subtypes (Extended Data Fig. 6d,e). These findings 
align with prior knowledge of VPM neuron projection patterns19.

NeuroXiv also demonstrates high efficiency in online analyses 
(Fig. 2d). We benchmarked NeuroXiv against the Digital Brain platform, 
finding that NeuroXiv completes most tasks within 4–5 s, regardless of 
data volume. By contrast, Digital Brain’s response time increases lin-
early with data size, taking over 80 s for the same CA1 neuron results—
nearly 20 times slower than NeuroXiv.

To improve the integration of LLMs into AIPOM, we implement two 
key optimizations. First, to address the challenges of unpredictable out-
puts and occasional inaccuracies, we developed an advanced Mixture 
of Experts (MoE) framework for more reliable mining reports (Fig. 2a, 
Extended Data Fig. 7 and Supplementary Figs. 11 and 12). This frame-
work operates in three stages: first, a program generates standardized 
reports that capture all relevant data details; second, multiple LLM 
experts analyze and summarize these reports from a data scientist’s 
perspective; and third, a separate LLM reviews the outputs for accuracy 
and consistency, producing the final report. This multiexpert approach 
allows MoE to deliver comprehensive data overviews while effectively 
identifying morphological and projection differences. Our tests show 
that the MoE framework yields higher accuracy and more concise 
reports compared with those generated by a single LLM (Fig. 2e).

Second, to address the computational demands of server-side LLM 
deployment, we offer a client-side solution using a natural language 
processing (NLP) model and a supervised decision tree. This approach 
transforms natural language queries into actionable search operations 
within 2–3 s, achieving comparable accuracy with a 12.3-fold improve-
ment in response time compared with LLM-based server-side searches 
(Extended Data Table 2).

In summary, NeuroXiv provides global access to the largest neuron 
morphometry database, aggregating and standardizing datasets into 
the SWC format and mapping them to the CCFv3 atlas for enhanced 
reusability. It integrates search, visualization and analysis tools, lever-
aging advanced LLMs for intuitive queries and mining reports. AIPOM 
optimizes performance using the MoE framework and client-side 
deployment, creating an open, scalable and efficient platform for 
neuron data reuse in neuroscience.
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Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-025-02687-2.

References
1.	 Zeng, H. & Sanes, J. R. Neuronal cell-type classification: 

challenges, opportunities and the path forward. Nat. Rev. 
Neurosci. 18, 530–546 (2017).

2.	 Aransay, A., Rodríguez-López, C., García-Amado, M., Clascá, F. &  
Prensa, L. Long-range projection neurons of the mouse ventral 
tegmental area: a single-cell axon tracing analysis. Front. 
Neuroanat. 9, 59 (2015).

3.	 Gong, H. et al. High-throughput dual-colour precision imaging for 
brain-wide connectome with cytoarchitectonic landmarks at the 
cellular level. Nat. Commun. 7, 12142 (2016).

4.	 Bria, A., Iannello, G., Onofri, L. & Peng, H. TeraFly: real-time 
three-dimensional visualization and annotation of terabytes of 
multidimensional volumetric images. Nat. Methods 13, 192–194 
(2016).

5.	 Manubens-Gil, L. et al. BigNeuron: a resource to benchmark and 
predict performance of algorithms for automated tracing of 
neurons in light microscopy datasets. Nat. Methods https://doi.
org/10.1038/s41592-023-01848-5 (2023).

6.	 Peng, H. et al. Morphological diversity of single neurons in 
molecularly defined cell types. Nature 598, 174–181 (2021).

7.	 Liu, Y. et al. Neuronal diversity and stereotypy at multiple scales 
through whole brain morphometry. Nat. Commun. 15,  
10269 (2024).

8.	 Xiong, F. et al. DSM: deep sequential model for complete 
neuronal morphology representation and feature extraction. 
Patterns 5, 100896 (2024).

9.	 Qiu, S. et al. Whole-brain spatial organization of hippocampal 
single-neuron projectomes. Science 383, eadj9198 (2024).

10.	 Winnubst, J. et al. Reconstruction of 1,000 projection neurons 
reveals new cell types and organization of long-range 
connectivity in the mouse brain. Cell 179, 268–281 (2019).

11.	 Kenney, M. et al. The Brain Image Library: a community- 
contributed microscopy resource for neuroscientists. Sci. Data 11, 
1212 (2024).

12.	 Ascoli, G. A., Maraver, P., Nanda, S., Polavaram, S. & Armañanzas, R.  
Win–win data sharing in neuroscience. Nat. Methods 14,  
112–116 (2017).

13.	 Timonidis, N. et al. Translating single-neuron axonal reconstructions 
into meso-scale connectivity statistics in the mouse somatosensory 
thalamus. Front. Neuroinform. 17, 1272243 (2023).

14.	 Wang, Q. et al. The Allen Mouse Brain Common Coordinate 
Framework: a 3D reference atlas. Cell 181, 936–953 (2020).

15.	 Mehta, K. et al. Online conversion of reconstructed neural 
morphologies into standardized SWC format. Nat. Commun. 14, 
7429 (2023).

16.	 Gao, L. et al. Single-neuron projectome of mouse prefrontal 
cortex. Nat. Neurosci. 25, 515–529 (2022).

17.	 Gao, L. et al. Single-neuron analysis of dendrites and axons 
reveals the network organization in mouse prefrontal cortex.  
Nat. Neurosci. 26, 1111–1126 (2023).

18.	 Bzdok, D. et al. Data science opportunities of large language 
models for neuroscience and biomedicine. Neuron 112,  
698–717 (2024).

19.	 Rubio-Teves, M. et al. Beyond barrels: diverse thalamocortical 
projection motifs in the mouse ventral posterior complex. J. 
Neurosci. 44, e1096242024, (2024).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with 
the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America, 
Inc. 2025

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-025-02687-2
https://doi.org/10.1038/s41592-023-01848-5
https://doi.org/10.1038/s41592-023-01848-5


Nature Methods

Brief Communication https://doi.org/10.1038/s41592-025-02687-2

Methods
Nomenclature and abbreviations of brain regions
The 12 major divisions of gray matter in the Allen Reference Atlas ontol-
ogy: isocortex, olfactory areas (OLF), hippocampal formation (HPF), 
cortical subplate (CTXsp), striatum (STR), pallidum (PAL), thalamus 
(TH), hypothalamus (HY), midbrain (MB), pons (P), medulla (MY) and 
cerebellum (CB).

Isocortex: primary motor area (MOp), secondary motor area 
(MOs), primary somatosensory area (SSp), supplemental somatosen-
sory area (SSs), gustatory area (GU), visceral area (VISC), dorsal audi-
tory area (AUDd), primary auditory area (AUDp), posterior auditory 
area (AUDpo), ventral auditory area (AUDv), primary visual area (VISp), 
anterior cingulate area, dorsal part (ACAd), anterior cingulate area, 
ventral part (ACAv), prelimbic area (PL), infralimbic area (ILA), orbital 
area, lateral part (ORBl), orbital area, medial part (ORBm), orbital area, 
ventrolateral part (ORBvl), agranular insular area, dorsal part (AId), 
agranular insular area, posterior part (AIp), agranular insular area, 
ventral part (AIv), retrosplenial area, ventral part (RSPv) and temporal 
association area (TEa).

Olfactory areas (OLF): piriform area (PIR).
Hippocampal formation (HPF): hippocampal region (HIP), fields 

CA1, CA2 and CA3, dentate gyrus (DG), dentate gyrus, molecular layer 
(DG-mo), entorhinal area, lateral part (ENTl), entorhinal area, medial 
part (ENTm), parasubiculum (PAR), postsubiculum (POST), presubicu-
lum (PRE), subiculum (SUB) and prosubiculum (ProS).

Cortical subplate (CTXsp): claustrum (CLA).
Cerebral nuclei (CNU): striatum (STR), caudoputamen (CP), 

nucleus accumbens (ACB), globus pallidus, external segment (GPe), 
globus pallidus and internal segment (GPi).

Thalamus (TH): ventral anterior–lateral complex (VAL), ventral 
medial nucleus (VM), ventral posterolateral nucleus (VPL), ventral 
posterolateral nucleus, parvicellular part (VPLpc), ventral postero-
medial nucleus (VPM), ventral posteromedial nucleus, parvicellular 
part (VPMpc), medial geniculate complex, dorsal part (MGd), lateral 
geniculate complex, dorsal part (LGd), lateral posterior nucleus (LP), 
posterior complex (PO), anteromedial nucleus (AM), mediodorsal 
nucleus (MD), submedial nucleus (SMT), paraventricular nucleus (PVT) 
and reticular nucleus (RT).

Hypothalamus (HY): subthalamic nucleus (STN) and zona  
incerta (ZI).

Midbrain (MB): substantia nigra, reticular part (SNr) and midbrain 
reticular nucleus (MRN).

NeuroXiv platform
The architecture of NeuroXiv (neuroxiv.org) is designed to support 
large-scale analysis of brain-wide neuron morphometry, utilizing a 
cohesive and highly integrated technology stack.

Frontend. The frontend of NeuroXiv is developed using Vue.js (v2.6.12), 
a progressive JavaScript framework known for its efficiency in build-
ing dynamic and responsive single-page applications. To create a 
user-friendly and visually engaging interface, Element Plus (v2.7.3), a 
Vue 3-based component library, is used. In addition, Three.js (v0.134.0) 
is integrated into the frontend to handle the rendering of complex 
three-dimensional (3D) visualizations, including brain regions and 
neuron reconstructions. This powerful WebGL-based library allows 
the generation of detailed and interactive 3D models, providing users 
with an immersive experience in exploring neuroanatomical data.

Backend. The backend is constructed with Python (v3.9.12) and Flask 
(v3.0.0), a lightweight Web Server Gateway Interface web application 
framework. Flask serves as the backbone of the server-side architec-
ture, enabling seamless communication between the frontend and the 
database. SQLite (v3.38.2) is used as the database engine, offering a 
self-contained, serverless solution for efficient data storage and retrieval. 

This setup ensures that the platform remains agile and capable of han-
dling the substantial datasets inherent to neuroinformatics research.

To manage web traffic and optimize performance, Nginx (v1.24.0) 
is deployed as a reverse proxy server. Nginx efficiently distributes 
incoming requests across backend processes, enhancing the platform’s 
ability to support a high volume of concurrent users while maintaining 
fast response times and secure connections.

NeuroXiv is hosted on AWS with four central processing units, 
32 GB of memory and 12.5 Gbps network bandwidth, leveraging AWS’s  
scalable and resilient cloud infrastructure to provide reliable access for 
users worldwide. This deployment strategy ensures that the platform 
remains highly available and capable of scaling in response to increasing 
user demand, thereby offering a stable and responsive environment for 
researchers.

Datasets
Currently, the NeuroXiv database reports the integration of several 
brain-wide neuron morphology datasets shared by the community. 
Each dataset will be described in detail in the following sections. In 
the future, we plan to continuously add new mouse brain datasets 
and encourage users to contribute their own datasets to the NeuroXiv 
platform. Furthermore, in upcoming updates, we plan to incorporate 
the BigNeuron Project5—a community-contributed resource for bench-
marking neuron morphology autotracing algorithms—into NeuroXiv, 
providing ongoing support for users worldwide.

SEU-ALLEN full dataset. This dataset6,7 was initially generated using 
a semi-automatic annotation pipeline with 1,741 neurons and has 
been expanded to 1,876 neurons with improved quality20. Each neu-
ron includes fully traced axonal and dendritic arbors, with 512 apical 
dendrites additionally annotated. The data mainly cover neurons in 
the VPM (389 neurons), CP (324 neurons) and many cortical regions.

SEU-ALLEN local dataset. This dataset was produced using an 
automatic tracing method described in our previous work7. Initially, 
image volumes centered on the cell body (soma) were extracted 
from whole-brain image data, with a size greater than 200 µm in each 
dimension, sufficient to capture most of the neuron’s dendritic arbor. 
These image volumes were then processed using image enhancement 
algorithms21 to improve image quality. Automatic reconstructions 
were generated and cross-validated using the APP222 and NeuTube23 
algorithms, followed by neurite fiber pruning to remove extraneous 
signals24. In NeuroXiv, we retained only the neurite segments within 
100 µm of the soma to ensure consistency. This dataset contains 155,743 
neurons, which are extensively distributed across various brain regions 
such as CP, MOB, OT, AON and PIR.

ION datasets. Currently, NeuroXiv integrates two datasets9,16,17 from 
Institute of Neuroscience (ION): a prefrontal cortex dataset comprising 
6,357 neurons (‘Single-neuron projectome of mouse prefrontal cortex 
(with dendrite)’, Brain Science Data Center, Chinese Academy of Sci-
ences; https://cstr.cn/33145.11.BSDC.1689837400.1681922768243666
945 and https://doi.org/10.12412/BSDC.1690164952.20001) and a hip-
pocampus dataset consisting of 10,100 neurons (‘Single-neuron datasets 
for mouse hippocampus’, Brain Science Data Center, Chinese Academy 
of Sciences; https://cstr.cn/33145.11.BSDC.1667284058.1585980235450
376194 and https://doi.org/10.12412/BSDC.1667278800.20001). During 
data integration, 77 neurons with indeterminate soma locations were 
excluded, resulting in a final dataset comprising 16,380 fully recon-
structed axons and 6,106 fully reconstructed dendrites. The neurons are 
primarily distributed across brain regions such as CA1 (3,657 neurons), 
DG-sg (2,618 neurons), SUB (934 neurons) and CA3 (887 neurons).

MouseLight dataset. The MouseLight project10 currently publishes 
data on 1,200 neurons available at MouseLight NeuronBrowser  
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(http://ml-neuronbrowser.janelia.org). During data integration, 50 
neurons with somas located in fiber tracts were excluded, resulting 
in 1,150 neurons from MouseLight being included in NeuroXiv. This 
dataset contains 1,150 fully reconstructed axons and 1,138 fully recon-
structed dendrites. The neurons are distributed across various brain 
regions, such as MOs, SUB, PRE, VAL, DG-mo and VPM, with some 
overlap with data from SEU-ALLEN and ION.

Data aggregation
Data aggregation in NeuroXiv involves collecting datasets from our 
own datasets (SEU-ALLEN) and third-party sources such as ION and 
MouseLight, and processing the data to convert it into a consolidated 
format.

Data format conversion. SEU-ALLEN datasets have already been pro-
cessed into the standardized SWC format15 and registered to the CCFv3 
atlas. Therefore, our focus here is on processing the datasets from 
ION and MouseLight. The ION and MouseLight datasets had different 
format issues. We standardized the ION datasets into the SWC format, 
aligning the structure domain types, for example, soma (type label = 1), 
axon (type label = 2), basal dendrite (type label = 3) and apical dendrite 
(type label = 4). We also converted the neuron reconstruction data 
from the MouseLight dataset from JavaScript object notation ( JSON) 
files into SWC files.

Quality control. We first performed a quality screening process to 
ensure data usability, filtering out noncompliant data. The specific 
steps included:

	(1)	 Single connected tree: ensuring that all nodes have only one 
parent node, tracing back to a single root node (soma).

	(2)	 Root node (soma) labeling: verifying that there is exactly one 
node labeled as type = 1 with parent = −1.

	(3)	 Structure domain type correctness: confirming that type attri
butes 1–4 are valid and that the type attribute remains consistent  
when tracing from terminal nodes back to the root.

	(4)	 SWC tree structure integrity: checking for the presence of loops 
and trifurcations in the SWC tree structure.

Atlas mapping. Using mBrainAligner25,26, we mapped all data points 
to the CCFv3 atlas. We then resampled the atlas-oriented reconstruc-
tion data, ensuring that the distance between parent and child nodes 
was set to 1 μm.

Data curation. All data points were renamed to follow a standardized 
format: ‘<resource_name>_<full/local>_<brainid>_<neuronid>_…_ 
<atlas>’ (for example, ‘SEU-ALLEN_full_17302_00001_CCFv3’).

Metadata extraction. We first extracted basic information such as 
the soma region for each neuron in the dataset. Then, using the atlas 
annotation template, we calculated the arborization strength for axons 
and dendrites across different brain regions based on neurite length. 
Finally, we extracted morphological features for axons and dendrites 
(Supplementary Table 1).

We generated lists of morphology- and projection-similar neu-
rons based on feature distances and axonal node point clouds. We 
also defined axon- and dendrite-neighboring neurons on the basis of 
arbor overlap. All metadata and similarity tables are stored in an SQL 
database for easy user access.

Visualization
Brain atlas visualization. We use the visualization toolkit (VTK) to 
render brain atlases and neuron morphologies. Brain regions are visual-
ized using annotation templates, marching cubes27 for mesh contours, 
and Laplacian smoothing28. To optimize performance, mesh triangles 

are reduced with progressive decimation, generating VTK files for 838 
brain regions in the CCFv3 atlas.

Neuron morphology visualization. The system includes two com-
ponents: thumbnail views for quick neuron morphology overviews 
and 3D atlas visualization for detailed exploration. Thumbnails are 
generated by resampling morphologies with a 100 µm step size and 
using principal component analysis for two-dimensional projec-
tions. Three-dimensional visualization converts neuron structures 
into object (OBJ) files for VTK, with soma rendered as a 50-µm sphere 
using Three.js.

MoE
We have developed a MoE framework that leverages four LLMs, each 
containing trillions of parameters. This system is specifically designed 
to collaboratively mitigate errors and hallucinations that are commonly 
associated with LLM-generated content, thereby producing reliable, 
accurate and coherent data analysis reports. The MoE framework oper-
ates in three distinct stages:

	(1)	 Descriptive report generation: Initially, data retrieved from the 
database are programmatically organized into a standardized 
data description format. This ensures consistency and facili-
tates accurate analysis by the models.

	(2)	 LLM export reports: The organized data are then independently 
analyzed by three models—Qwen-Max-0428, Mistral-Large-2407 
and GLM-4-0520. Each model is tasked with generating an 
analysis report based on the following prompts (In the follow-
ing statement, {data} refers to the descriptive reports generated 
in the previous step):
	2.1	 Prompt for overview

Objective: To provide a concise summary that enhances 
readability and clarity, with a focus on accurately represent-
ing significant numerical values.
Methodology: The model is instructed to prioritize larger 
statistics while summarizing key findings in a coherent para-
graph without bullet points.
Data input: ‘Original statistical data: {data}’

	2.2	Prompt for morphological features mining
Objective: To analyze neuronal morphology data, particu-
larly focusing on critical features such as ‘total length’ and 
‘number of bifurcations’.
Methodology: The model generates a comparative summary 
that emphasizes the importance of these features, ensuring 
numerical accuracy throughout.
Data input: ‘Original neuronal morphology data: {data}’

	2.3	Prompt for projection pattern mining
Objective: To analyze neuronal projection data, with a spe-
cific focus on axon and dendrite projections, and their impli-
cations for neuronal connectivity.
Methodology: The model produces a summary that highlights 
the key points related to projection length and strength of con-
nectivity, maintaining numerical precision and coherence. 
Data input: ‘Original neuronal projection data: {data}’

	(3)	 Report confirmation: 
The GPT-4o-2024-05-13 model serves as the final synthesis ex-
pert. This model evaluates the analysis reports generated by the 
three previous models against the original data and synthesizes 
them into a comprehensive, refined analysis report. The process 
follows a structured evaluation as outlined below (in the follow-
ing statement, {origin_input} refers to the descriptive reports 
generated in step 1 and LLM summaries generated in step 2):

	3.1	Prompt for overview
Objective: To assess the precision of three summaries rela-
tive to the original statistical dataset insights.

http://www.nature.com/naturemethods
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Methodology: The model ensures that numerical data in the 
summaries align with the source material. The most accurate 
summary is then refined into a new summary that enhances 
readability, brevity and consistency.
Data input: ‘Original text: {origin_input}’

	3.2	Prompt for morphological features mining
Objective: To meticulously assess the accuracy of three sum-
maries in relation to an original text detailing neuronal mor-
phology data.
Methodology: The model compares numerical values, par-
ticularly those related to ‘total length’, ‘number of bifurca-
tions’, ‘max path distance’ and ‘center shift’, ensuring accu-
racy and consistency in the summaries.
Data input: ‘Original text: {origin_input}’

	3.3	Prompt for projection pattern mining
Objective: To evaluate the precision of summaries concern-
ing neuronal projection characteristics, particularly focus-
ing on axon and dendrite projections as indicators of con-
nectivity strength.
Methodology: The model confirms numerical congruity and 
validates the logical consistency of comparisons in the sum-
maries, generating a final, coherent summary.

Data input: ‘Original text: {origin_input}’

MoE evaluation
The evaluation methodology is centered on assessing the accuracy 
and logical consistency of text summaries by comparing them against 
a source text. This process is implemented through a custom Python 
script that systematically evaluates key aspects of the summaries, par-
ticularly focusing on numerical data accuracy and logical consistency.

Data accuracy evaluation. The evaluation begins by extracting numer-
ical data from both the source text and the generated summaries. A 
custom function utilizes NLP tools, such as spaCy, to identify numbers 
within their contextual surroundings. These extracted numbers are 
then compared between the source text and the summaries to deter-
mine how accurately the numerical data have been represented.

A data accuracy score is calculated by examining the occurrence 
and contextual integrity of each number in the summaries relative to 
the source text. This score reflects the proportion of correctly matched 
numerical values, providing a quantitative measure of how faithfully 
the summaries represent the original data.

Logic consistency verification. Beyond numerical accuracy, the script 
also evaluates the logical consistency of the summaries. This involves 
verifying whether the statements in the summaries logically follow 
from the information provided in the source text.

The script uses an LLM to perform this verification. It generates a 
prompt that includes both the source text and the summary statement 
in question, asking the model to determine whether the summary 
statement can be logically and numerically inferred from the source. 
The output from the LLM is then parsed to decide whether the sum-
mary is logically consistent. The logic accuracy score is derived by 
calculating the percentage of summary sentences that were deemed 
logically valid.

Comprehensive evaluation. The script integrates the results from 
both the data accuracy and logic consistency assessments to provide a 
comprehensive evaluation of the summaries. By quantifying the align-
ment of numerical data and logical coherence, the evaluation method 
offers a robust approach to determining the quality and reliability of 
text summaries in capturing the essence of the source material.

Documentation and reporting. The results of the evaluation pro-
cess, including both data accuracy and logic consistency scores, are 

meticulously recorded. This documentation includes relevant meta-
data, such as the models used and the specific instances evaluated, 
ensuring that the evaluation process is both transparent and reproduc-
ible for further analysis and refinement.

AI-powered natural language search
Our framework integrates multiple components to achieve accurate 
and context-aware natural language understanding and data retrieval.

	(1)	 Entity recognition and intent classification: The core of our 
NLP framework is built on a combination of machine learning 
models and rule-based systems. A supervised decision tree clas-
sifier, trained on a specialized dataset of neuroscience-related 
queries, is used to recognize key entities such as neuron types, 
brain regions and projection relationships. The classifier works 
alongside rule-based components that handle domain-specific 
terminology variations, ensuring a robust response to user 
queries.

	(2)	 Semantic parsing and contextual understanding: The frame-
work uses semantic parsing techniques to accurately extract 
and interpret user intent from natural language input. It detects 
complex phrases related to neuroscience, such as neuron classi-
fications and brain region relationships. Using contextual analy-
sis, the system discerns detailed query intents (for example, 
 ‘projection from region X to region Y’), allowing precise and 
relevant data to be retrieved.

	(3)	 Dynamic mapping and knowledge integration: The framework 
integrates domain-specific structured schemas to map both 
full terminologies and their corresponding abbreviations into 
a standardized format compatible with database queries. This 
dynamic mapping ensures consistency and accuracy by aligning 
user input with the system’s structured knowledge base. This 
capability enhances the system’s flexibility and robustness in 
providing comprehensive and relevant responses.

	(4)	 Multistage query processing pipeline: The NLP module oper-
ates through a multistage query processing pipeline, encom-
passing tokenization, entity extraction, context recognition 
and result formulation. Each stage is designed to maximize the 
understanding of user input and generate accurate database 
queries, providing users with precise and comprehensive 
results.

Frontend deployment and benefits. The NLP framework is deployed 
on the frontend using Vue.js, which brings two notable advantages:

	(1)	 Protecting user privacy: By processing queries directly on the 
client side, the framework ensures that user inputs remain pri-
vate and are not exposed to external servers. This approach is 
particularly beneficial in sensitive research settings where data 
privacy is paramount.

	(2)	 Improved query speed and responsiveness: Client-side process-
ing substantially reduces latency by eliminating unnecessary 
server round trips. This results in faster response times and 
a more interactive user experience, enabling researchers to 
explore neuroscience data efficiently.

Implementation and model training. The implementation lever-
ages JavaScript-based libraries combined with tailored AI algorithms 
optimized for the neuroscience domain. The decision tree model is 
trained on a diverse set of domain-specific queries to ensure robust 
performance and generalization.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
Atlas-mapped neuronal morphology data and discovery results—
including metadata, figures and mining text—are available for direct 
download via the web portal (https://neuroxiv.org). In addition, we 
have set up an AWS server (https://download.neuroxiv.org) to facili-
tate easy access to standardized datasets. VTK files for various brain 
regions in CCFv3 are also available via GitHub at https://github.com/
SEU-ALLEN-codebase/NeuroXiv/VTK. All the materials available from 
NeuroXiv should only be used exclusively for academic purposes and 
must adhere to the CC-BY NC license (https://creativecommons.org/
licenses/by-nc/4.0/legalcode). Source data are provided with this 
paper.

Code availability
The source code of the NeuroXiv project is available via GitHub at 
https://github.com/SEU-ALLEN-codebase/NeuroXiv, where detailed 
deployment instructions are provided. User manuals and video tutori-
als are available at our website (https://neuroxiv.org). Data processing 
utilizes the plugin system provided by the Vaa3D platform (version 
4.001, available via GitHub at https://github.com/Vaa3D). The source 
code for quality control procedures is available via GitHub at https://
github.com/Vaa3D/vaa3d_tools/tree/master/hackathon/shengdian/
NeuroMorphoLib. The source code for mBrainAlinger is available 
via GitHub at https://github.com/Vaa3D/vaa3d_tools/tree/master/
hackathon/mBrainAligner. Atlas mapping can also be conducted via 
the mBrainAlinger web portal (http://mbrainaligner.ahu.edu.cn). All 
code is available under an open-source MIT license.
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Extended Data Fig. 1 | Local dendrites in the NeuroXiv database. a, the statistics of the number of local dendrites in different brain regions within the CCFv3 atlas.  
b, Visualization of local dendritic data across various brain regions. Local dendrites are rendered in distinct colors to enhance differentiation.
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Extended Data Fig. 2 | Gains in improvements resulting from data 
aggregation. The NeuroXiv database was compared with three other data 
sources across multiple parameters. In all comparative analyses, gray bars 
indicate the maximum values obtainable from other individual data sources. 
Colored bars demonstrate improvements achieved using the NeuroXiv database. 
a, neurite arborization. Total arborized length across brain regions, with separate 
measurements for axonal and dendritic processes. b, projection combinations. 

Number of distinct projection patterns between brain regions, considering only 
neurons with processes extending >1000 μm into target regions. c, neuronal 
proximity. three categories of neighboring neurons: soma-neighboring, axon-
neighboring and dendrite-neighboring. d, neuronal similarity. two classification 
types: projection-similar and morphology-similar. (See Extended Data Fig. 3 for 
precise definitions of neighboring and similar neuron classifications.).
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Extended Data Fig. 3 | Illustrative diagrams depicting the definition of 
correlated neuron data on the NeuroXiv platform. a, projection similarity 
neurons are defined by the distance measured between key axonal nodes of 
the neurons, including the soma, bifurcation points, and terminal points. 
b, morphological similarity neurons are defined by calculating the distance 
between neuron pairs in morphological feature space. In the database, we 
rank similarity based on the distances, with closer distances indicating greater 

similarity. c and d, Axon neighboring neurons are those where the axonal arbor of 
neurons in the database spatially overlaps with the dendritic arbor of the subject 
neuron. Conversely, dendrite neighboring neurons are those where the dendritic 
arbor of neurons in the database spatially overlaps with the axonal arbor of the 
subject neuron. In the database, we rank neighboring neurons based on the 
length of the overlapping arbor regions, with greater lengths indicating higher 
proximity.
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Extended Data Fig. 4 | Interactive visualization diagram of NeuroXiv.  
a, we have implemented a 3D viewer on the web platform, allowing users to 
visualize the atlas and neurons or neuronal structures of interest. b, visualization 
of individual neuron data, featuring an embedded arbor viewer with zoom-in 

views of basal and apical dendrites. c, arbor distribution of major cell types 
across various brain regions. We also visualize arbor distribution across different 
cortical layers.
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Extended Data Fig. 5 | An illustrative diagram of data retrieval and filtering on 
the NeuroXiv platform. a, each neuron reconstruction in the NeuroXiv database 
is assigned a unique ID and includes three types of metadata: basic information, 
morphological features, and projection characteristics. b, users can customize 
their search strategies using either the ID or the metadata. c, to facilitate efficient 

data filtering, we have implemented a neuron browser on the web portal. This 
tool displays the morphology of each neuron (neuron thumbnail) and key 
information, and includes an entry point for navigating to detailed data pages. 
d, users can define regions of interest (ROI) and then retrieve neurons with soma 
located within these ROI (Supplementary Fig. 6).
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Extended Data Fig. 6 | A case study of neuron projection research using 
NeuroXiv. a, this study includes 417 VPM neurons from two sources. Overall, VPM 
neurons project through the CP brain region, bifurcating at the boundary of the 
CP region to target cortical brain areas. Based on combinations of target brain 
regions, eight subtypes of projections are identified. Subtype P8 (characterized 
by neurons projecting to VISp) was excluded from subsequent analyses.  
b, differences in projection strength among various projection types in target 
brain regions and cortical layers are visualized, with projection strength 

determined by axonal length. c, VPM neurons exhibit projection selectivity 
across cortical layers. For instance, neurons projecting solely to the SSp-n region 
form clusters while skipping L5, whereas neurons projecting solely to the SSp-m 
or SSp-bfd regions form clusters while skipping L4. d and e, differences in soma 
distribution and morphological characteristics among various VPM projection 
subtypes are analyzed. In this figure, box edges in box plots show 25th and 75th 
percentiles, the centre line shows the 50th percentile, and bars show 1.5× the 
interquartile range (75th percentile – 25th percentile).
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Extended Data Fig. 7 | A schematic illustration of the mixture of experts (MoE) 
system. The MoE-based report generation process can be divided into three 
distinct stages. 1) Descriptive reports generation: A program generates reports 
in a fixed format, capturing all relevant details of the retrieved data. 2) LLM 
Expert reports: Multiple LLM Experts analyze and summarize the descriptive 

reports from a data scientist’s perspective. Although three experts are shown, the 
process can involve one or more. 3) Report confirmation: A different LLM Expert 
evaluates the previous reports for accuracy, readability, and coherence, and 
refines the final report accordingly. An actual case is shown on the far right, with 
red arrows pointing to the reports generated at each stage.
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Extended Data Table 1 | Comparison of alternative neuron morphology web platforms
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Extended Data Table 2 | Comparison of the performance of two types of natural language query methods in AIPOM

To achieve this, we defined three common retrieval scenarios: querying neuron types, querying neurons with particular structures, and querying neurons with specific projection patterns, 
each comprising 10 test cases. To ensure fair testing, both methods used the same computer configuration, eliminating disparities due to varying computational power. The server-side 
method involved setting up a local NeuroXiv server on the test computer, while the client-side method accessed the NeuroXiv server hosted on AWS directly. As a result, compared to the 
server-side approach, the client-side method demonstrated an average response time improvement of 12.3.
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