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Abstract

It is crucial to develop accurate and reliable algorithms for fine reconstruction of neural morphology from whole-
brain image datasets. Even though the involvement of human experts in the reconstruction process can help to
ensure the quality and accuracy of the reconstructions, automated refinement algorithms are necessary to handle
substantial deviations problems of reconstructed branches and bifurcation points from the large-scale and high-
dimensional nature of the image data. Our proposed Neuron Reconstruction Refinement Strategy (NRRS) is a novel
approach to address the problem of deviation errors in neuron morphology reconstruction. Our method partitions
the reconstruction into fixed-size segments and resolves the deviation problems by re-tracing in two steps. We also
validate the performance of our method using a synthetic dataset. Our results show that NRRS outperforms existing
solutions and can handle most deviation errors. We apply our method to SEU-ALLEN/BICCN dataset containing
1741 complete neuron reconstructions and achieve remarkable improvements in the accuracy of the neuron skel-
eton representation, the task of radius estimation and axonal bouton detection. Our findings demonstrate the critical
role of NRRS in refining neuron morphology reconstruction.

Availability and implementation: The proposed refinement method is implemented as a Vaa3D plugin and the
source code are available under the repository of vaa3d_tools/hackathon/Levy/refinement. The original fMOST
images of mouse brains can be found at the BICCN’s Brain Image Library (BIL) (https://www.brainimagelibrary.org).
The synthetic dataset is hosted on GitHub (https:/github.com/Vaa3D/vaa3d_tools/tree/master/hackathon/Levy/
refinement).

Contact: lijuan-liu@seu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Digital tracing or reconstruction (Meijering, 2010) of a neural
morphology is defined to geometrically model the backbone of neu-
rites with countable topologically connected structure components
like 3D spheres or lines segments (Gillette ez al., 2011), and stores
the coordinate, thickness and graph connectivity information in
SWC file (Stockley ez al., 1993). In the context of digital tracing or
reconstruction of neural morphology (Basu ef al., 2016; Huang
et al., 2022; Liu et al., 2022; Peng et al., 2011a,b; Xiao and Peng,
2013), editing refers to the process of refining the results to ensure
accuracy (Meijering, 2010; Peng et al., 2011a,b). This can involve
manual proofreading and refinement of the raw tracing results to fit
the centerline of neurites imaging signals. Additionally, various tech-
niques have been developed to improve the accuracy of reconstruc-
tion results, such as using higher resolution imaging techniques
(Economo et al., 2016; Gong et al., 2016), developing more sophisti-
cated algorithms for automatic tracing, and incorporating machine
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learning approaches etc. (Bria et al., 2016; Peng et al., 2017; Wang
et al., 2019a,b; Zeng, 2018). The goal of editing is to provide a
detailed and accurate representation of the neural morphology,
which can be used to better understand the structure and function of
the nervous system.

Recent advances in whole-brain imaging and related technolo-
gies have led to the development of several complete neuron morph-
ology reconstruction datasets in whole-brain scale. These datasets
include Janelia Research Campus’s 1002 neurons’ dataset
(Winnubst et al., 2019), SEU-ALLEN’s 1741 neurons’ dataset (Peng
et al., 2021), and ION’s 6357 neurons’ dataset (Gao et al., 2022).
Fine digital tracing and associated morphological characteristics
from these datasets are highly required for various applications,
such as classifying neuronal cells, determining the role of single neu-
rons within neuronal circuits (Peng et al., 2013), and electrophysio-
logical simulation of individual neurons (Zhang et al., 2017).
However, due to fluctuations in image quality of tera-voxel scale
whole-brain datasets, manual editing remains an integral part of the
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production of gold-standard neuron reconstruction datasets.
Human experts are involved in the reconstruction workflow to par-
tially resolve the complex annotation challenges posed by the
whole-brain scale. Yet, different degrees of deviation at branches
and bifurcation points are produced, which in turn decreases the
utility of further extraction of fine structures like dendritic spines
and axonal boutons.

The in- or post-process refinement step is crucial in mitigating
the deviation of neuron reconstruction and improving efficiency,
particularly in regular non-automatic annotation protocols at the
whole-brain scale (Peng ef al., 2021; Winnubst et al., 2019). To bet-
ter understand the situation, we have identified three major cases of
reconstruction deviations (Fig. 1). Case 1 deviations occur at intern-
al inflexion neurites, particularly in images with a low signal-to-
noise ratio (SNR). Case 2 deviations occur at bifurcation points,
while Case 3 shows three to eight pixels of directional deviations of
entire neurites. Deviations like Case 1 can be caused by a resample
operation to a raw SWC file, while Case 2 is mainly due to half-
hearted annotation by a human annotator. Both Case 1 and Case 2
can also be attributed to noise from a tracing algorithm with weak
tracing performance. A commonly utilized strategy for handling
terabyte-sized whole-brain imaging datasets is to create a hierarchy.
For example, TeraFly organizes large-scale imaging datasets into
multiple resolution layers to provide a navigation experience similar
to Google Maps. However, simply mapping tracing results at a low-
resolution layer to a high-resolution layer would result in unfitted
reconstruction results (Case 3).

Mean-Shift (MS), as an algorithm proposed for shifting nodes to
the nearest centroid literately (Comaniciu et al., 1999), is usually
applied to refine neurite reconstruction in a local imaging block.
One drawback for MS is that a maximum searching distance param-
eter needs to be provided for constraining the solution space, which
is hardly general for a complete neuronal reconstruction crossing
thousands of imaging blocks. Other potential solutions to the limita-
tions of Mean-Shift (MS) algorithm for refining neurite reconstruc-
tion include 3D shape restriction Mean-Shift (Jiang et al., 2020) and
an optimization algorithm based on the Lasso approach (Li et al.,
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Fig. 1. Examples of deviation cases. Case 1: The reconstruction result does not cover
the entire bending of the signal. Case 2: The reconstruction result fails to find the ac-
curate position of the branch point. Case 3: Overall deviations of the reconstruction
results

2019). 3D shape restriction Mean-Shift can lead each processing re-
construction unit, typically a node in SWC file, to a locally optimal
position without considering the rationality of the entire fitting
results. Unlike MS, 3D shape restriction Mean-Shift does not require
a maximum searching distance parameter, which makes it more suit-
able for complete neuronal reconstruction crossing thousands of
imaging blocks. The optimization algorithm based on the Lasso ap-
proach optimizes the shape of neurons by setting the objective func-
tion. This method does not have the problem of selecting MS
parameters, but the effectiveness depends heavily on the initial
points. In addition, the results cannot change the number of recon-
struction points, which limits the final optimization effect to some
extent.

To address the deviation cases mentioned above, we introduce a
Neuron Reconstruction Refinement Strategy (NRRS). Instead of
developing a new optimization algorithm for complete neuronal re-
construction, we focus on automatic tracing methods that have been
extensively studied during the past decade. These automatic meth-
ods internally contain centerline optimization functions that are per-
fect for our refinement goal. Based on this idea, our strategy
partitions neuron morphology reconstruction into fixed-size seg-
ments and resolves the deviation problems through two steps of neu-
ron tracing. Additionally, we build a synthetic image dataset that
serves as the validation dataset for quantifying the performance of
our method. We show that NRRS has the ability to handle most of
the defined deviation errors, while existing solutions hardly achieve
matched performance. When applying our method to the SEU-
ALLEN dataset containing nearly 2000 complete neuron reconstruc-
tions, we present large improvements obtained in the accuracy of
the neuron skeleton representation, radius estimation and possible
axonal boutons’ detection. The results demonstrate the indispens-
ability of our strategy in refining neuron morphology reconstruc-
tion. As a result, we have a version of the results of neuronal
reconstruction with more accurate and abundant biological
information.

2 Materials and methods

2.1 Datasets

The study is being validated and tested using ~1741 complete neu-
ron reconstruction datasets (R1741). These datasets are semi-
automatically annotated by the SEU-ALLEN joint center on 34
mouse brains with the fluorescence micro-optical sectioning tomog-
raphy fMOST. To precisely quantify the feasibility of refinement
methods, which have not been done by any related studies, we built
a synthetic dataset as a test set to reproduce the possible refinement
needs in neuron reconstruction pipelines. The synthetic dataset com-
prises 1065 synthetic local neural image blocks and their corre-
sponding neuron reconstruction results. The generated workflow
contains two parts: the neuron skeleton (synthetic neuron recon-
struction results) formation part and the image formation part
(Supplementary Fig. S1). After the workflow, the ground truth neu-
ron skeleton data, test neuron skeleton data and synthetic neuron
images can be obtained. Furthermore, we randomly sampled 6504
neuron reconstruction 3D blocks (512x512x256, XYZ) from
R1741 to further validate the actual performance of our method.
Since the whole-brain neural images are too large to be checked in
3D-view manually, we generated the 178849 MIP (Sato et al.,
1998) images (512x512, XY) of the R1741 to check whether our
strategy had introduced potential mistakes.

2.2 Methods

Our method involves a strategy that consists of two re-tracing steps
for dealing with the general deviations of neuron reconstruction, the
falsely labeled branching point, and the whole-brain scale challenge.
The overall workflow is shown in Figure 2. We assume that the an-
notation of the starting point (soma) and terminal points is com-
pletely correct and limit our refinement to work only on the internal
nodes of neuron reconstruction results. This method partitions the
neuron reconstruction results into a series of segments with a fixed,
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Fig. 2. Overall workflow of our refinement strategy. Dots: reconstruction nodes, the connection between which is the neuron skeleton (blue curve) of the segment. Different
dot colors indicate results after different partition steps. (a) Schematic of the four refinement steps: (i) the first partition step: break each neuron branch into segments less than
50 um. (ii) The first re-tracing step: trace paths between given points. (iii) The second partition step: find the midpoints of the first re-tracing path. (iv) The second re-tracing
step: trace paths between given points. (b) The processing results of three neurites in different refinement steps. Scale bar: 10 pm

computer-handled length to ensure the consistency of image quality
beforehand. Then, our goal is to optimize each partitioned segment
independently, and we achieve this by making two endpoints an in-
put of a tracing algorithm, which can automatically trace an optimal
path between these two endpoints. We can then select another pair
of endpoints on the traced optimal path as input to do another trac-
ing in the next step.

Details of the procedures are as follows: In the first partition
step, we divide neurons into branches based on bifurcation points.
We then break down branches longer than 50 um into smaller seg-
ments. In the first re-tracing step, we use a graph-augmented de-
formable model (GD) as the tracing algorithm, which consists of
two steps: the graph step and the deform-step. The graph step con-
structs a graph structure based on the segmented neuron morph-
ology, and the deform-step deforms the graph structure to fit the
image data.

The graph step: We find the shortest path P between the given
start and endpoint pairs. For graph G = (V, E), V is the set of verti-
ces in the graph and E is the set of edges among vertices. Each vertex
in V represents an image voxel. We define the edge weight between
vertexes vo and vy, and ensure that the first re-tracing skeleton
passes through image voxels with high intensity. The edge weight is
calculated as follows:

(81(v0) +g1(1/1))) 1)

e(vo,vn) = Hvown*( 5

Where gj(.) represents the metric of image voxel intensity. It is
defined as:

gl = exp()q(l - I(P)/Imax)z) (2)

Where I(.) represent the intensity of the image, then we take ad-
vantage of the Dijkstra algorithm (Noto and Sato, 2000) to get the
shortest path P in graph G. /; is the given constant.

The deform-step: we adopt the conventional optimization idea
and use the coordinates of the points on the tracing path as input
parameters, which are called control point estimations, to optimize
the objective function, which is also called the energy function.
Firstly, we define the initial control point estimations of the deform-
able model as {C,, k=1,2, ..., K} from the path P in the graph-
step. The solution to the optimization problem has become how to
find the best control point estimations which have the least value of
the energy function. Thus, we apply the local optimization approach
to further centralize and refine the skeleton curve C. The energy
function E is defined as follows:

E= “Eimage + ﬁElength + VEsmoothness~ (3)

Where the o, f and 7 are the given coefficients of the energy func-
tion (=1, f=y=0.2 in this step). In the first re-tracing step, the
most important factor is the image information since the primary
goal of is to find the optimal path on the correct signal. Therefore, a
should be larger than B and y. After experiments, we found that
(¢=1, f=y=0.2) is a good choice.
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The energy functions of Eimage, Eiength and Egmoothness are defined
as following;:

K
Eimage = le:l(El(k) + Ec(k)) (4)
K-1
Elength = b1 ||Ck — Crq ||2 (%)
Re s Cro1+ Cry1 2
Eqmoothness = k=2 ||Ck - 2 H (6)

We set two energy terms E;(k), E.(k) utilizing the information
from the intensity of image and the distance between the skeleton
and the center of the signal:

I(C :
Cew) 7

Ei(k) = A <1 o m

(k) = AcZgeo(Cnl|Ce — qll’1(q)

Ec
Zscocnl(@)

(8)

Where k is the node in the shortest path P.

After the first re-tracing step, the main body of the segment is
matched with the centerline of the neurite signal while two end-
points still deviate. The accuracy of the first tracing can be guaran-
teed by the GD algorithm’s superiority (Peng et al., 2010).
Therefore, in the second partition step, we partition the results of
first re-tracing step at the middle points and use the adjacent middle
point pairs as the input of the second re-tracing step.

After the first retracing step, the main body of the segment is
matched with the centerline of the neurite signal, while the two end-
points still deviate from the neural signal. The accuracy of the first
tracing can be guaranteed by the GD algorithm’s superiority (Peng
et al., 2010). Therefore, in the second partition step, we partition
the results of the first retracing step at the middle points and use the
adjacent middle point pairs as the input of the second retracing step.

Next, we change the coefficients of the energy functions in the
second re-tracing step. Since the start and end points of the re-
tracing algorithm are guaranteed to be on the correct signal, the
smoothness and overall length of the neural skeleton become more
important, meaning that f and y should be larger. Through experi-
mentation, we set o= f§ =7 =0.5. Based on this, a different path is
traced through the given points of the second partition and opti-
mized by minimizing the energy function. After the second re-
tracing step, the entire skeleton of the reconstructed neuron is
refined to the centerline of the neural signal.

3 Experiments and results

3.1 Validation on synthetic dataset

To quantitatively assess the performance of existing neuron refine-
ment methods, we compared our method mainly to MS and AMS (a
kind of Mean-shift that can automatically choose its parameters,
more information can be seen in the Supplementary Materials) on
the synthetic image dataset (Fig. 3). The results show that
our method outperforms MS, especially at the bifurcation points
(Case 3).

In more detail, the first row in Figure 3a shows three types of
image blocks from the synthetic dataset that serve as ground truth
data. The second row consists of test data consisting of three repre-
sentative error cases. As shown in the MS row, MS fails to refine the
test data to its image signal centerline and also has poor refinement
performance at the bifurcation points (Case 3). In contrast, our
method works well in all three cases, especially in Case 3, where our
method reaches a more reasonable global optimal path than other
methods.

We used radius and intensity as important evaluation metrics to
assess the performance of our method (Fig. 3). The calculation of
these metrics can be seen in the Supplementary Materials. The quan-
tities were calculated on individual synthetic image blocks and

collected from 6504 blocks for bar plots. The metrics we used in-
clude skeleton deviation, bifurcation deviation, radius deviation, in-
tensity deviation, information loss rate and storage size. The
increase of the radius and intensity can serve as important indicators
of performance improvement, as the closer the reconstruction results
are to the center of the signal, the larger the estimated radius will be
and the brightness of the image block where the reconstruction point
is generally also larger. All the standards are based on the compari-
son with ground truth. Our proposed NRRS significantly improves
the accuracy of neuron morphology reconstruction (Fig. 3b—g). Our
method outperforms other methods in terms of skeleton deviation,
bifurcation deviation error and the extraction of radius and intensity
information from neurite signals. Specifically, our method decreases
the average skeleton deviation to 27% (Fig. 3b) and reduces the bi-
furcation deviation error to 42%, while other methods only decrease
the bifurcation deviation error to 58% (Fig. 3¢). Additionally, our
method has the most accurate performance in the extraction of ra-
dius and intensity information from neurite signals (Fig. 3d-g).
Although using AMS can also improve the quality of reconstruction,
it requires a much larger storage size and is not always effective or
valid. AMS achieves the current performance by sacrificing the cost
of storage by adding more reconstruction nodes, which can solve
some problems in simple cases. However, our NRRS method is
more efficient and effective in handling most deviation errors.

The proposed information extraction scheme is crucial in evalu-
ating the digital representation ability of different refinement solu-
tions. The information extraction rate, which is defined as the
proportion of the volume covered by the reconstruction result to the
actual volume covered by the ground truth signal, is used to quantify
the performance of different methods. By resampling the results of
different methods to the same interval (2 um), we calculated the in-
formation extraction rate using the method described in
Supplementary Materials. Our strategy only lost about 10% of the
information, while other methods lost at least 30% of the informa-
tion on average. Moreover, when each method achieved the best in-
formation extraction rate, we compared the storage results of each
method and found that the optimization results of our scheme only
require slightly more storage than the original data and less than the
MS or AMS algorithm.

3.1.1 Improvements in complete neuron reconstruction dataset

To demonstrate the wide applicability of NRRS, we applied it to the
manually annotated version of the R1741 dataset. NRRS resolves
the deviation problems in two aspects.

First, manual checks remain the most convincing method to jus-
tify the performance of different methods. We manually checked the
majority of neurons in the R1741 dataset, and our approach
addresses the problem of reconstructions that deviate from the sig-
nal. In most cases, refined neuron skeletons are closer to the signal
centerline, have brighter signals and more bifurcation point posi-
tions. To further verify that our method has not introduced new mis-
takes, we generated 178849 MIP images. MIP images can be
checked much more rapidly, so we had enough human resources to
check all the neurons’ images (Supplementary Fig. S4).

Secondly, through manual checks, we can confirm that our
method truly brings improvement, which requires further quantifi-
cation. For example, we observed larger and more accurate radius
estimations (as in the previous part) resulting from our method.
Thus, we can define radius improvement as the difference between
raw data and refined data. Similarly, in Figure 4, we used four
aspects to describe the improvements: node improvement is the aver-
age node distance change, radius improvement is the average node
radius increase, intensity improvement is the average node intensity
increase and bifurcation point improvement is the average distance
change of the bifurcation points.

In Figure 4a, the radius of the tube represents the change in node
position between the raw neuron and the refined neuron. The den-
drites and terminal axons show the most displacement, while the
axon main path has an overall shift. In Figure 4b—e, all brains show
an enhancement in four features. The average radius has increased
by 0.5-1.25 pixels for each brain, indicating that some brains may
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Fig. 3. Quantitative validation on a synthetic dataset. (a) Examples of the synthetic dataset and the performance of different algorithms. (b—g) The quantitative comparison be-
tween our strategy and other solutions. NRRS significantly improves the accuracy of neuron morphology reconstruction. NRRS outperforms other solutions in terms of statis-
tics validation for solving the deviation of skeleton and bifurcation points. Additionally, NRRS can obtain more accurate radius estimation and intensity extraction, with less
information loss. Moreover, the reconstruction results refined by NRRS have a relatively smaller storage size
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have had better-reconstructed results previously. The changes
brought by the refinement algorithm seem to be more balanced for
the average distance change. The average nodes’ refinement distance
varies from 1.75 to 2.62 pixels. Our refinement strategy has boosted

the average brightness of reconstructed points per brain from 58 to
96 according to the intensity change, indicating that our method has
shifted the neuron reconstructed results to the right center of the sig-
nal. Lastly, we calculated the average change in bifurcation points,
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Fig. 5. Improvements of radius estimation on axon and dendrite. (a) The improvement of the axon radius measurement after refinement. (b) Statistical results demonstrate that
our method achieves better radius results on over 1400 neurons in 10 whole-brain images. (c) Dendrite radius measurement result also has a better performance. (d) Statistical
results prove that our refinement method has brought an obvious promotion in dendrite radius

which varied from 0.3 to 0.55 pixels. There are many branch points
in a whole-brain-level neuron, and not every bifurcation point needs
to be refined heavily. Therefore, the bifurcation offset may not be
obvious enough on the average level. A specific example better illus-
trates this point.

We estimated the axon and dendrite radii of the R1741 dataset
(Fig. 5). The statistical results show that the average axon radius of
nearly every brain has increased by 0.15 pm. For brains 17 302 and
17 545, the peak increase of the average axon radius is 0.5 pm. With
respect to neural dendrites, deviations usually occur on the terminal
branches. After refining our method, the dendrite radius of each
brain is on average increased by 0.1-0.3 um. Based on manual judg-
ment and quantitative statistics, our method truly provides a better
effect on radius estimation.

3.1.2 Improvements in axonal bouton detection

To demonstrate the effectiveness of NRRS in refining neuron
morphology reconstruction, we applied our protocols to the task of
detecting axonal boutons. Axonal boutons are typically located
along the axonal signal are visually distinguishable from axons in
light microscopy data due to their larger radius and greater bright-
ness. Researchers use the radius and intensity information of the
axon to determine the position of potential boutons. Our method
significantly improves the accuracy of radius estimation and inten-
sity extraction, which are crucial in detecting axonal boutons.

We used the bouton detection function in Vaa3d (Jiang et al.,
2022) on the SEU-ALLEN dataset, cropping 305 images to check
the results of detected boutons from the neuron skeleton before and
after refinement (Fig. 6a, Supplementary Fig. S5). Raw neuron skele-
tons have many false positives and false negatives. After refinement,
however, the more accurate estimation of axon radius led to more
rigorous bouton detection results.

We also quantified the boutons extracted from 1741 neurons,
including bouton radius, bouton intensity and bouton number. Both
the average bouton radius and bouton intensity improved. Statistical

results for bouton number show that the number of boutons
extracted for some brains decreased. This is because our method not
only extracted the originally missed boutons, but also greatly
reduced the number of detected erroneous boutons. In conclusion,
our method significantly improves the accuracy of bouton detection.

4 Conclusion and discussion

Our proposed NRRS significantly improves the accuracy of neuron
morphology reconstruction. Our method outperforms existing re-
finement solutions in either inflexion deviation scenes or entire devi-
ation scenes. In particular, our work has achieved a pretty good
performance on refining bifurcation points, which have not been
considered by any other refinement solutions. The main goal of our
work is to implement a general method not only for partial neuron
reconstruction but also for dealing with the ‘big data’ challenge
brought by the whole brain scale. We adopted several specific treat-
ments to accomplish this. The first one is a partition of neuron re-
construction so that it can be processed by current computing
hardware, and refinement of each partitioned segment would not be
affected by changes in image quality. The second one is the re-
tracing idea for optimizing varying degrees of reconstruction
deviation.

In the validation part, our work formulates a canonical form for
the quantitative assessment of the performance of refinement meth-
ods and generates a synthetic dataset for validation. Previous studies
used visual inspection as the main tactic to validate the refinement
performance, which is unrealistic for the ever-growing interest in
complete neuron reconstruction at the whole-brain scale. Moreover,
validating with the same workflow will greatly improve the speed of
refinement works in the development phase and benchmark test in
comparison.

We demonstrate the effectiveness of our refinement strategy on
the SEU-ALLEN whole-brain neuron reconstruction dataset, which
is currently the largest complete neuron morphology reconstruction
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Fig. 6. Improvements in whole-brain axonal bouton generation. Red line: raw neuron reconstruction results. Blue line: neuron reconstruction results refined by our method. (a)
Our method increases the precision of bouton extraction. (b-d) Our method extracts the bouton features more accurately and obtains better results on the bouton detection

task. The false positive rate increases and the false negative rate decreases

dataset. Figure 1 shows examples cropped from the SEU-ALLEN
dataset, and it is evident that our method significantly improves the
accuracy of neuron morphology reconstruction. Our method moves
the deviated neuronal skeleton to the center of the signal, even in
cases of poor signal quality. In Case 2, our method successfully fits
the thin and tortuous signal, and in Case 3, our method accurately
identifies the most suitable bifurcation point on the signal, resulting
in a more accurate and reasonable neuron morphology. Our strategy
reduces the deviation error to less than 6.8% without sacrificing
storage size. By using a refined version of this dataset, improvements
can be observed in radius estimation, image intensity extraction and
axonal bouton detection. Our refinement strategy is a powerful tool
for improving the accuracy of neuron morphology reconstruction.

The limitations of present works include two parts: the applic-
ability of the tracing algorithm used in the re-tracing step and the
correctness of reconstructed terminal points. Specifically, the GD al-
gorithm used in this manuscript is designed to obtain a path with
less defined cost, and different parameter groups for the cost func-
tion may output various optimized paths. One set of parameters
may not be able to reach a reasonable path for all the situations that
occur in whole brain scale. Therefore, one thing that needs to be fur-
ther investigated is the adaptive setting of parameters. Another limi-
tation is that the current version cannot refine the tract close to
soma and neural terminal, since our hypothesis is absolutely correct
of soma and neural terminal points. A pre-refine of reconstructed
soma and neural terminal could further promote the entire refine-
ment of neuron reconstruction.

Our method is implemented as a C++ plugin in Vaa3d system.
The refinement time cost for a neural reconstruction that contains
over 30 thousand SWC nodes (the overall reconstructed neurites are
about 30 000 um) is about 3min on a Linux workstation with
Intel(R) Xeon(R) Gold 6132 CPU. And the processing can be tre-
mendously speeded up by parallelization of the re-tracing step,

which is highly useful in the large production of neuron
reconstruction.
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