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SUMMARY
We examined the distribution of pre-synaptic contacts in axons of mouse neurons and constructed whole-
brain single-cell neuronal networks using an extensive dataset of 1,891 fully reconstructed neurons. We
found that bouton locations were not homogeneous throughout the axon and among brain regions. As our
algorithm was able to generate whole-brain single-cell connectivity matrices from full morphology recon-
struction datasets, we further found that non-homogeneous bouton locations have a significant impact on
network wiring, including degree distribution, triad census, and community structure. By perturbing neuronal
morphology, we further explored the link between anatomical details and network topology. In our in silico
exploration, we found that dendritic and axonal tree span would have the greatest impact on network wiring,
followed by synaptic contact deletion. Our results suggest that neuroanatomical details must be carefully ad-
dressed in studies of whole-brain networks at the single-cell level.
INTRODUCTION

Neuronal morphology plays a fundamental role in determining

the function of neuronal networks. Neurons are polarized cells

conformed by the dendritic and axonal trees. Axons send con-

nections to dendrites from other neurons through membrane

specializations called synapses, which are structures that allow

transmission of neuronal electrophysiological impulses. The ar-

chitecture of the trees and the distribution of synapses within

them determine the connectivity of neuronal networks. Changes

in the structure of neurons can have a dramatic impact on cogni-

tion, and changes in dendrite shape and size have been associ-

ated with intellectual disability.1 Previous work from our team

showed how the detailed organization of post-synaptic contacts

in dendritic trees shapes neuron firing.2 However, understanding

the effect of single-neuron morphology on whole-brain circuit

connectivity is still an open challenge.

Limited by resolution and time cost, current studies on the

structural properties of whole-brain connectivity are mostly

described from the mesoscale and macroscale perspectives.

Studies of human brain networks3 usingmagnetic resonance im-

aging show that there is a functional division in the brain at the

anatomical level,4 called community structure.5,6 This structure

means that brain networks can be divided into subnetworks

with specific cognitive functions,7–12 with high-node-density

communities and sparse communities connecting them.5,13–15

Several experiments have also shown that the average path dis-

tance between nodes is much smaller in macroscopic brain net-
This is an open access article und
works than in random networks,16–18 reflecting their small-world

topology and the existence of central hubs.19,20 This is thought to

improve the segregation and integration of information within the

brain,21 reducing the cost associated with information process-

ing.22,23 However, most of the experimental data obtained in

these studies consists of �1 mm sided voxels, which pool infor-

mation from thousands of individual neurons.

At the mesoscale, the Allen Institute for Brain Science con-

ducted a comprehensive study of the mouse brain connectivity,

mapping the whole brain using population-based tracer injec-

tions.24 The study found that the clustering coefficients are close

to those expected in a small-world network, while the degree

distribution is close to a scale-free network.24 A refined connec-

tivity analysis of the same experimental data showed global hubs

in the mouse brain, including associative cortical areas, dorsal

portions of the hippocampus, and subregional portions of the

basolateral and central amygdala.25,26 The results also show

highly connected central hub nodes interlinked with each other

throughout the brain, supporting the efficient integration of

otherwise segregated neural circuits. Neuromodulatory nuclei

work as connector hubs and critical orchestrators of network

communication at the fine granularity.25 These studies have

deepened our understanding of brain structure, but they still

rely on measurements in large populations of tracer-injected

neurons, missing the details of single-neuron morphologies.

Therefore, it is necessary to study neuronal morphology on the

single-cell level, as it is more meaningful in terms of finer and

more essential brain network structures.
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Figure 1. Axonal bouton distribution is cell-type dependent

(A) 2D sagittal, coronal, and horizontal projections of putative bouton locations (in red) from two sets of neurons with somas (in blue) located in the ventral

posteromedial (VPM) nucleus of the thalamus (TH) and mouth primary somatosensory (SSp-m) area of the cortex based on the CCFv3 parcellation (NVPM = 379,

NSSp-m = 78). See supporting datasets in the data and code availability section for a complete list of acronyms.

(B) Horizontal projection of bouton locations in the top five regions most innervated by VPM and SSp-m neurons. Cortical regions are colored in shades of green,

caudoputamen (CP) in the striatum (STR) in blue, and VPM in the TH in pink.

(C) Top: morphologically similar neurons have analogous bouton distributions throughout the axons. Bottom: scatterplot of the topological morphology

descriptor (TMD) distances between pairs of neurons with somas in the same region using default TMD (x axis) or TMD bouton (y axis; see STAR Methods). The

plot shows pairwise distances for neurons with putative bouton locations (blue) and analogous measures for uniformly distributed boutons (red). ‘‘r’’ values

specify Pearson correlation coefficients.

(D) Sholl analysis of the number of boutons, cable length, and density of boutons for neurons with their soma in VPM (top), SSp-m (middle), or CP (bottom). Lines

indicate average values overlaid to shadows indiciating the standard error of the mean. When calculating boutons, we use the path distance to the soma instead

(legend continued on next page)
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At the single-cell level, limited by the lack of experimental data,

only a few studies have explored the impact of morphological

details onwhole-brain connectivity. Electronmicroscopy studies

provide highly reliable data for the study of synaptic sites at the

subcellular scale, but currently, those are limited to subregions of

the mammal brain and do not allow direct extraction of brain cir-

cuit topology.27 Alternatively, light microscopy approaches are

being used to approximate brain circuit topology at the cellular

scale. In a study of the hippocampal trisynaptic circuit, a highly

specialized topology has been shown to minimize communica-

tion cost through information-processing hubs nested in a two-

tier structure that manage the network traffic with strong resil-

ience to random perturbations.28 However, a recent study of

bouton-spine pairs in the rat barrel cortex found that most over-

lapping axons and dendrites were not connected,29 indicating

that the distribution of synaptic contacts in single neurons

must be addressed in detail. However, it did not examine the

impact of the detailed distribution of pre-synaptic contacts in

full axon morphologies, and it relies on the underlying assump-

tion that pre-synaptic contacts are uniformly distributed. Com-

plementing these results, a recent article has briefly explored

how perturbed dendritic morphology could alter the rat somato-

sensory minicolumn wiring. The study found that shortening or

deleting the dendrites resulted in connection deficits in the

neuronal network,30 which is consistent with observations in

neurological disease.31 However, an exploration of how diverse

perturbations in axonal trees and pre-synaptic contact distribu-

tions is missing, together with a graph-theoretical detailed anal-

ysis of the impact of perturbations on network topology.

The high-throughput generation of single-neuron full mor-

phology reconstructions in the mouse brain offers the possibility

of exploring a novel approximation to single-cell whole-brain

networks.32 Subsequent work has provided putative bouton lo-

cations throughout the fully reconstructed axonal trees.33,34

The fact that neurons reconstructed from diverse brains are

spatially registered35 to a common coordinate framework

(CCFv3)36 allows us to analyze axon-dendrite potential connec-

tions at the whole-brain level with unprecedented anatomical

detail. Although these data are not as precise as electron

microscopy quantifications, they provide the advantage of a

whole-brain perspective while allowing for the identification of

subcellular synaptic structures. Similar to the use of post-synap-

tic dendritic spines to quantify and describe excitatory input con-

nectivity to dendritic trees, we use axonal boutons as a first

approximation to study pre-synaptic connectivity. In fact, axonal

boutons have been shown to be a proxy of structural neuronal

connectivity.37 However, reconstructing the full morphology of

axonal projections and measuring the locations of single bou-

tons in the context of the complete axonal tree was not possible

until recently. For this reason, Peters’ rule,38 a common approx-

imation for quantifying neuronal connectivity at the cellular scale,

has been used in the field of computational neuroscience. This

rule assumes that there is a potential connection between a
of the direct distance, which can also be seen as bouton density. Statistically s

indicated with a gray shadow; paired-samples t test random vs. observed bouto

(E) Bar plot of the fitted average bouton density (see STAR Methods) for all neu

between brain areas; ***p < 0.001. N is the number of neurons in each brain regi
nearby axon and a dendrite, implying that synaptic connections

are evenly distributed over the axonal and dendritic segments.

However, it has been suggested that ground-truth synaptic con-

nectivity follows a nuanced Peters’ rule instead.27 From this

perspective, the spatial distribution of pre- and post-synaptic

sites and synaptic contact probabilities vary among diverse

neuron types, finely tuning network connectivity.

We hypothesize that neuron morphology details determine

network wiring. Specifically, we consider that distribution of

axonal boutons throughout the axonal tree is not uniform and

that such distribution determines network topology. Meanwhile,

perturbation of specific morphological properties (i.e., neuron

tree size, complexity, and density of axonal boutons) has a differ-

ential significant impact on network structure. To test this

hypothesis, we devised an algorithm to generate single-cell

networks in the whole brain using putative bouton locations

and also simulated uniformly distributed boutons throughout

the axon. First, we illustrate the biological relevance of axonal

bouton distributions. With the networks we generated, we

perform a detailed graph-theoretical analysis of the network

structure and its dependence on axonal bouton distribution. To

contextualize this information and explore its relevance in com-

parison to biologically plausible neural morphological alter-

ations, we explored the impact of perturbing specific morpho-

logical features.

RESULTS

Axonal bouton distribution is cell-type dependent
We analyzed putative axonal bouton locations obtained by

another team34 through automated detection of increased radius

and intensity blobs in fully traced axons from neurons with

somas located mainly in the thalamic and cortical regions. See

the supporting datasets in the data and code availability section

for a summary of the number of neurons (n > 20) in each analyzed

CCFv3 brain region. The spatial distribution of the boutons is

mainly determined by the axonal projection pattern of each cell

type (Figures 1A and 1B). To explore the biological relevance

of the bouton distributions along the axons, we explored them

in neurons with similar morphology and soma location in the

brain (Figure 1C, top). To identify morphologically similar neu-

rons, we used the topological morphology descriptor (TMD), a

method to encode the spatial structure of trees combining

morphology and topology.30,39 The default TMDdefinition by Ka-

nari et al. defines the barcode of a tree as the set of radial dis-

tances to the soma in the birth and death nodes of each branch

of the tree. By measuring the distance between barcodes, we

obtained pairwise distances between all neurons in each brain

region. To quantify the similarity in axon bouton distributions,

we defined TMD bouton barcodes as the set of numbers of pu-

tative boutons enclosed within spheres with radii defined by the

birth and death nodes of each branch of the tree. This reflects a

trend in the distribution of putative boutons throughout the tree
ignificant differences between uniform and observed bouton distributions are

n number per neuron p < 0.005, NVPM = 379, NSSp-m = 78, NCP = 325.

rons in each of the brain regions with more than 20 neurons. Pairwise t tests

on, indicated in the x axis.
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branch (see Figure S1 for a visual). As expected, default TMD

and bouton TMD distances are correlated (Pearson correlation

coefficient of 0.595 for default TMD vs. bouton TMD distances,

Nneuron_pairs = 15,549,66). However, TMD distances obtained

with measured putative boutons have lower correlation coeffi-

cients with default TMD than compared to the case of random

bouton locations, indicating that putative bouton locations are

biologically meaningful (0.595 vs. 0.829; Figure 1C). As an

example, default TMD (Figure S1B, left) has a distribution that

is approximately a scaled version of random bouton TMD (Fig-

ure S1B, right), which differs from the putative bouton TMD (Fig-

ure S1B, middle). Another observation that supports the validity

of the data is that bouton density in somatosensory areas (ob-

tained as the total length of axon [14,740,853.79 mm] divided

by the number of boutons [1,147,532] in these CCFv3 regions)

is 0.0778 boutons per mm, which is close to 0.061 boutons per

mm as experimentally measured in adult mice using serial-sec-

tion electron microscopy data.37

To explore whether bouton distributions are non-uniform,

we defined null uniform distributions of bouton locations for

each neuron (see STARMethods). Interestingly, the null distribu-

tion showed a higher correlation with default TMD than the

measured distribution of putative boutons (Figures 1C, bottom,

and S2A; Pearson correlation coefficients of 0.829 vs. 0.595

for random and measured, respectively; one-way ANCOVA

F(1, 3,109,929) = 0.022, p = 7.17e�9). This is explained by the

fact that our bouton TMD definition is highly sensitive to differ-

ences in the total numbers of boutons of morphologically similar

neurons (Figure S2B). Correlations between TMD distances

segregated for neurons with their somas in specific brain regions

show analogous results (Figure S2C). A Sholl analysis of axon

length, branch points, and density of boutons showed (see

STAR Methods) that putative bouton distributions significantly

differ from a uniform distribution (Figure 1D; paired-samples

t test random vs. putative bouton number p < 0.005). When

calculating boutons, we use the path distance to the soma

instead of the direct distance, which is also the bouton density

through the whole neuron structure. Specifically, the boutons

of neurons in the thalamus (ventral posteromedial [VPM]) are

preferentially located at the distal axon and have low bouton

density near the soma. Neurons in the striatum (caudoputamen

[CP]) share similar trends.Conversely, neurons in the somatosen-

sory cortex (mouth primary somatosensory [SSp-m]) show a

distribution of boutons that is close to uniform for both proximal

and distal axonal branches and significantly lower than uniform

in the middle section (see other cell types in Figures S2D

and S3A).

Obtaining small fragments of axons and quantifying axonal

bouton density is a common practice in electron microscopy

studies.37,40,41 Our results indicate that those estimates may

vary among distal and proximal axonal trees. This phenomenon

has also been found in studies of substantia nigra reticular part

(SNr) neuronal projection areas.42 To provide improved esti-

mates based on our detailed data, we fitted a uniformly distrib-

uted bouton curve to the observed distribution of putative bou-

tons (see STAR Methods). Neurons with their somas in

different brain regions showed different average bouton density

values (Figure 1E; paired samples t test cortex vs. thalamus
4 Cell Reports 43, 113871, March 26, 2024
p < 2e�16, cortex vs. striatum p < 2e�16, cortex vs. hippocam-

pus p = 0.98, hippocampus vs. thalamus p = 1.1e�9, hippocam-

pus vs. striatum p = 9.2e�5, striatum vs. thalamus p = 3.9e�11).

The average bouton density of the analyzed cell types ranged

from 0.029 to 0.104 boutons per mm.

As previously described for neocortical inhibitory neurons,43

we found that lower Strahler order44,45 segments (tip or close-

to-tip segments) have the highest density of boutons, decreasing

toward higher Strahler order segments, especially above 2 (Fig-

ure S3B). Interestingly, the Strahler order distribution of bouton

densities varied among neurons with somas in different brain re-

gions (Figure 1F; all pairwise t tests p < 0.05 except for SSp-m vs.

VPM in Strahler orders 3 and 4). The low variance in the bouton

density within each Strahler order indicates that those can be

considered homogeneous.
Generation of connectivity matrices based on full
neuron reconstructions
To investigate the details of single-cell morphology, including the

size and complexity of axons and dendrites, and the specific ef-

fects of the number and distribution of boutons on the network,

we devised a method for constructing single-cell networks

based on full neuron tracings. We argue that if there are axon

boutons and dendrites in close spatial proximity, then they

have a high probability of producing synaptic contact.27 To

generate connectivity matrices, we divided the whole brain into

30 3 30 mm cubes (see STAR Methods) and measured the

axon length, dendrite length, and bouton number of each neuron

within each cube (Figure 2A). We consider that when both axons

and dendrites are present in a cube containing boutons, there is

a potential connection (Figure 2B). Then, we defined the connec-

tion strength (Figure 2C) as follows. Considering that an axon

may connect to many dendrites in the same cubic volume, we

set the strength of the connection proportional to the number

of boutons and to the proportion of the length of each dendritic

tree. Specifically, the connection strength of the pre-synaptic

neuron n with the post-synaptic neuron m in a single cube is

defined as

Ck
nm = N bk

n � P dk
m (Equation 1)

In cube k, the number of boutons of neuron n is N bk
n and the

proportion of dendrite length of neuron m is P dk
m, meaning the

length of the dendrite of neuronm in cube k over the total length

of all dendrites having connections in cube k (see STAR

Methods). The multiplication of the two provides the connection

strengths of neuron n and neuron m in cube k, which is Ck
nm. It is

important to note that dendrite length is used here to distribute

the existing pre-synaptic contacts among different post-synap-

tic neurons occupying the same cube. We obtained the full-brain

single-cell connectivity matrix by adding the results obtained on

all cubes covering the mouse brain in CCFv3 (Figure 2D).

We applied this network generation method to our single-cell

data with observed bouton locations (observed network). To

explore the relevance of the bouton distribution on the network

topology, we also generated a uniform network, setting boutons

throughout the axon using the average bouton density for each

cell type we obtained previously (Figure 1E).



Figure 2. Generation of connectivity matrices based on full neuron reconstructions

(A) 3D rendering of the division of the whole brain into cubes of 30 mm units (top left) and full neuron reconstruction registered to CCFv3 (bottom left). Close-up

rendering of a pair of neurons (dendrites in blue and axons in red and orange; middle). Rendering of a region of interest where axons and dendrites are close by in

CCFv3 space (top right) and where the length of dendrite and the number of axonal boutons (green dots) can be obtained within each cube (bottom right).

(B) Schematic visualization of the coexistence of axon and dendrite within each cube, which define connectivity together with axonal boutons.

(C) Schematic visualization of our procedure to obtain the connection strength between each pair of neurons in a cube according to the number of boutons and

the dendrite length of each post-synaptic neuron found in the cube.

(D) Visualization of a subset (304 and 306 pre- and post-synaptic neurons, respectively) of the whole-brain single-cell connectivity matrix.
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Bouton distribution tunes network topology and
influences community structure
A comparison between our observed connectivity matrix and the

mesoscale connectome obtained previously with tracer injec-

tions24 shows similar connectivity clusters (Figure S3C), sug-

gesting that even though our single-neuron data account for a

very small percentage of the network, they can recapitulate the

mesoscopic structure. The uniform network shows a bias toward

increased connectivity, with 1,847 nodes and 22,882 edges

compared to the observed network with 1,781 nodes and

14,056 edges. The small difference in the number of nodes is

due to the removal of neurons with 0 potential connections. Cir-

cular plots of the network structure show that there are a large

number of potential connections between the cortex, thalamus,

and striatum, as well as local potential connectivity (Figure 3A).

To explore the community structure, we used the Leiden com-

munity detection algorithm46 (see STAR Methods) on the two

networks. Remarkably, the circular plots show that the bouton

distribution tunes the community structure in the network. We

assessed the number of neurons in each community and found

that, in the observed network, the largest community of neurons

(N = 206) belongs to the thalamo-cortical loop in the left hemi-

sphere (mainly from VPM to SSp barrel field [SSp-bfd] in the cor-

tex; Figures 3A and S4A). However, this loop is under-repre-

sented in proportion in the uniform network, being the third

largest community (N = 215) (Figure S4B). The second largest

community in the observed network (N = 179) is defined by the

right hemisphere thalamo-cortical loop with a higher representa-
tion of the ventral posterolateral nucleus of the thalamus (VPL)

and medial geniculate complex (MG) in the thalamus and other

cortical areas such as the supplemental somato-sensory area

(SSs) and the retrosplenial area, ventral part (RSPv). The most

similar community in the uniform network is larger in proportion

(N = 256), having an over-representation of primary visual area

(VISp) neurons. The third largest community in the observed

network is the cortex-thalamus-striatum loop of cortical neurons

with CP and VPM (N = 172). This community is the second largest

in the uniform network (N = 234), where the motor cortex, CP,

and the agranular insular area dorsal part (AId) are over-repre-

sented. Conversely, for this community, SSp neurons are un-

der-represented in the uniform network.

Previous studies show that there are some simple organiza-

tional patterns such as the degree distributions47 in brain net-

works that can be explained using network models.3 To explore

this, we generated three artificial networks, random, small world,

and scale-free, with the same number of nodes and edges as the

observed network for comparison. Given that Oh et al.24 showed

that the mouse brain network has small-world topology traits

(namely large clustering coefficient and short average path

length48), we tested whether the observed and uniform networks

follow this trend. In the random network, the average path length

is 3.852, and the clustering coefficient is 8.96e�3, compared to

the observed average path length of 4.828 (uniform: 4.257) and

clustering coefficient of 0.184 (uniform: 0.195) in the observed

network (supporting datasets can be found in the data and

code availability section). These results are consistent with
Cell Reports 43, 113871, March 26, 2024 5
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previous data.24 However, the model that best approximates the

degree distribution of the observed and uniform networks is the

scale-free network (Figure 3B; Spearman correlation observed

vs. scale-free r(1,779) = 0.242, p < 0.001; observed vs. random

network r(1,779) = 0.029, p > 0.1; observed vs. small-world

network r(1,779) = 0.0136, p > 0.1, N is the number of edges

in different networks). However, degree distributions strongly

differ among all cases (see supporting datasets in the data and

code availability section for pairwise two-sample Kolmogorov-

Smirnov tests; p < 1e�83). When comparing observed with

uniform, the degree distribution shows an increased propor-

tion of high-degree nodes (two sample Kolmogorov-Smirnov

D(1,779) = 0.297, p < 0.001).

To better understand this difference, we tested whether high-

degree nodes are different among the two networks. We ob-

tained hub and authority scores for anatomically defined brain

regions.49 The brain regions with the highest hub scores are

SSp-m and VPM in both networks (supporting datasets can be

found in the data and code availability section). Authority nodes

are mainly cortical regions (including nose SSp [SSp-n], SSs,

SSp unassigned [SSp-un], SSp-m, and SSp-bdf) for the

observed network but also include CP, VPL, and VPM in the uni-

form network. This reflects neural sinks and sources in hub re-

gions.25 Also, these hubs are consistent with global functional

hubs and high connection diversity hubs inmouse functional net-

works.50 Those can be linked to the integration and segregation

of the networks51 bymeasuring the ratio between local and inter-

region potential connections, which identify provincial and

connector hubs. We found that the uniform network tends to

have higher connector hub scores except for VPM (Figure 3C;

pairwise t test observed vs. uniform VPL p = 0.017, VPM p =

8.1e�7, and CP p = 1.3e�5, N is the number of neurons in

each brain region: NVPL = 80, NVPM = 379, and NCP = 325). This

also suggests that the specific distribution of axonal boutons

can have functional implications and is relevant to understand

the contribution of each brain region in information transmission

and processing throughout the brain.

The pattern of potential connections between triads is the

most basic motif forming the networks,52 and its distribution

reflects the rules of neuronal connectivity.29 We found that

observed and uniform networks have similar triad distributions

(Figure S4C; two-sample Kolmogorov-Smirnov D(14) = 0.3125,
Figure 3. Bouton distribution tunes network topology and influences c

(A) Circular plot visualization of the single-cell networks constructed based on obs

circle by the soma location of each neuron in the network. The middle circle indic

the inner circle indicates the broad brain regions TH, STR, hippocampal formation

the circle indicate potential connections between individual neurons. We colored

(B) Scatterplot of the degree distributions of observed (blue), uniform (orange), E

(C) Bar plot of connector hub scores for the soma regions with at least 50 neuro

connector hub score 1, which indicates the same proportion of edges within and

neurons in each brain region. Bars indicate mean values ± standard error of the

(D) Bar plot of triad occurrence is relative to endoplasmic reticulum (ER) network

(orange), small-world (red), and scale-free (purple) networks. Bars indicate mean v

relative to observed (right). The dashed lines indicate no difference (ratio = 1). The b

each index from simple to complex.

(E) Scatterplot of the degree distribution of different subnetwork based on cell ty

green node; MOp, green cross).

(F) Bar plot of triad occurrence in different subnetworks based on cell types. We
p = 0.42), and both strongly differ from random, small-world,

and scale-free networks (Figure 3D, top; supporting datasets in

the data and code availability section), showing more prominent

feedback and complex potential connections compared to the

expected occurrence in randomnetworks (Figure 3D; supporting

datasets in the data and code availability section). This result is

consistent with previous observation in cortical microcircuits,

but we noticed more complex motifs between three neurons in

networks, which were missing in previous studies. We assume

this is because our data have an unprecedented level of detail

and a number of reconstructions.29,53,54 Meanwhile, the uniform

network overestimates all network motifs in comparison to

observed, with an average ratio of 2.1 (Figure 3D, right), high-

lighting a methodological artifact in studies assuming homoge-

neous axonal bouton distributions.

We analyzed the subnetworks composed of established

anatomical types of neurons within thalamus (VPM), striatum

(CP), and cortex (SSp-m and primary motor area [MOp]). VPM

neurons receive input from the cortex and project to the cortex

and thalamus (Figure S5A). CP neurons receive inputs primarily

from the cortex and a few from the thalamus, with many local

connections. SSp-m and MOp neurons both receive inputs

from the thalamus and striatum (mainly CP) and interconnect

with other cortical layers (Figure S5B, left). MOp has more con-

nections to the lower limb somatosensory cortex (SSp-ll) and

secondary motor areas (MOs) compared to SSp-m. All subnet-

works showed similar trends in terms of degree distribution

and triads compared to random and scale-free networks (Fig-

ure S5B, middle). Interestingly, neurons in the cortex (SSp-m,

MOp) have more high-degree nodes compared to neurons in

the thalamus and striatum (VPM, CP) (Figures 3F, S5C, and

S5D). The motif distribution of VPM neurons mainly contained

low-complexity motifs communicating between pairs of neurons

or one direction transmission among three neurons. However,

the distribution for CP, SSp-m, and SSs neurons showed more

high-complexity motifs with multi-directional three-neuron inter-

communications (Figure 3F). This is consistent with the knowl-

edge of the thalamus as an anatomically critical node for trans-

mitting information.55 In this line, we also attempted to

examine the subnetworks of neurons in cortical layers (layer

2/3 and layer 5, limited to those to ensure enough neurons for

the analysis). The nodes in both subnetworks all have high
ommunity structure

erved (left) and uniform (right) bouton data. We assigned the colors in the outer

ates the largest three communities obtained using the Leiden algorithm,46 and

(HPF), cortical subplate (CTXsp), and isocortex. The lines crossing the center of

them according to the soma location of the pre-synaptic neuron.

rdös-Rényi (ER; green), small-world (red), and scale-free (purple) networks.

ns for observed (blue) and uniform (orange) networks. The gray line indicates

across regions. Pairwise t test *p < 0.05 and ****p < 0.0001, N is the number of

mean.

s with the same number of nodes and edges (left) of observed (blue), uniform

alues ± standard deviation. Bar plot of triad occurrence in the uniform network

ottom row shows schematic visualizations of the networkmotifs identified with

pes. We chose the type in TH (VPM, pink), STR (CP, blue), and cortex (SSp-m,

calculated the number of triad occurrences for each neuron.
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Figure 4. Dendritic and axonal tree spans are the main determinants of network topology

(A) Representative example of a full morphology neuron (top) withmagnifications of dendritic (blue) and axonal (red) arbors. The axonal arbormagnification shows

axonal boutons as green dots. The circular plot of the observed unperturbed network (bottom). Colors in the outer circle indicate the soma location of each

neuron. The inner circle indicates the broad brain regions TH, STR, HPF, CTXsp, and isocortex. The lines crossing the center of the circle indicate potential

connections between individual neurons, colored according to the soma location of the pre-synaptic neuron.

(B) Representative visualizations of single-neuron perturbations in both dendritic and axonal arbors of the neurons (top row), only in axonal arbors (middle row),

and only in dendritic arbors (bottom row). The perturbations include scaling of the tree span (left row), pruning of branches (middle column), and deletion of

boutons (right column). Scale bars: 100 mm.

(C) Line plot of the degree distributions (top) for the unperturbed observed network (blue) and for scale (orange), prune (green), and bouton deletion (purple)

perturbations in both dendritic and axonal arbors. The colored shadows indicate the range in which degree distributions vary with each perturbation with ratios

(legend continued on next page)
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degrees and contain complex connectivity patterns. Due to data

limitations, we do not see a difference between the two layer 5

neurons that tend to have higher degree connectivity and tend

to form more complex motifs (Figure S5F). However, those re-

sults should be interpreted carefully given the limitations in

spatial registration to CCF (see limitations of the study).

Overall, our results suggest that the detailed distribution of

axonal boutons is a relevant determinant of the network topol-

ogy. Taking into account that the basic function of brain net-

works is to transfer and store information, we measured cost

(defined as the total number of boutons in the network), routing

efficiency,56 and storage capacity,57 which are topological cor-

relates of the network functional performance58 (see STAR

Methods). Since the uniform network has more edges and stron-

ger potential connections, its cost, routing efficiency, and stor-

age capacity are 1.563, 1.561, and 1.595 times higher than the

observed network, respectively (Figure S4D). But the average

routing efficiency and storage capacity per bouton, which is

the value divided by cost and is representative of the Pareto opti-

mality of the network,58 did not change (normalized routing effi-

ciency and storage capacity are 9.6e�3 and 0.38 a.u., respec-

tively, for both networks). Thus, it remains an open question

whether non-random distributions of axonal boutons imply any

functional advantage from an energy optimization perspective.

Dendritic and axonal tree spans are the main
determinants of network topology
To analyze the impact of putative morphological alterations rele-

vant to cognitive impairments,59–64 we perturbed the networks

as follows: scaling neuron size, pruning neuron branches, and

removing axonal boutons (see STAR Methods). Tree span has

the greatest impact on the network, implying a marked shift to-

ward lower-degree potential connections (Figures 4C, left, and

S6A; Kolmogorov-Smirnov unperturbed vs. scale all 0.5 D(86) =

0.477, p = 6.5e�9, N is the number of degrees) and orders of

magnitude lower occurrence of complex network motifs (Fig-

ure 4C, right; Kolmogorov-Smirnov unperturbed vs. scale all 0.5

D(14) = 0.438, p = 0.0933, N is the kind of triadmotifs). Conversely,

pruning and bouton deletion, even when reducing the number of

branches or boutons to half, had a modest impact on degree dis-

tribution (Figure 4C, left; Kolmogorov-Smirnov unperturbed vs.

prune all 0.5 D(86) = 0.198, p = 0.07; Kolmogorov-Smirnov unper-

turbed vs. bouton delete all 0.5 D(86) = 0.093, p = 0.85, N is the

number of degrees) and the triad census (Figure 4C, right;

Kolmogorov-Smirnov unperturbed vs. prune all 0.5 D(14) = 0.25,

p = 0.716; Kolmogorov-Smirnov unperturbed vs. bouton delete

all 0.5 D(14) = 0.125, p = 0.999, N is the kind of triad motifs).

Similarly, we investigated the community structure of different

networks after perturbation. Pruning of axonal and dendritic

branches, or bouton removal, does not implymarked differences

in the community structure (Figures S7A–S7C). The top two

communities are still the cortico-thalamic loop of both hemi-

spheres and the third is a cortico-thalamic-striatal loop. How-
between 0.5 and 1. Bar plot (bottom) of triad occurrence relative to the observe

(purple) perturbations. The bottom row shows schematic visualizations of the ne

(D) Bar plots of routing efficiency (left) and storage capacity (right) divided by the

networks (blue) and after scale (red), prune (green), and bouton deletion (purple)
ever, the scaling of dendritic and axonal trees sharply reduced

the number of potential connections (having 3,955 edges

compared to 14,056 in the observed network), strongly impact-

ing the community structure (Figure S7D). While dendritic scaling

strongly reduced the number of potential connections (average

of 373 potential connections per community) in comparison to

axonal scaling (average of 760 potential connections per com-

munity), the change in the community structure for axonal

scaling implied losing the thalamic connection in the thalamo-

cortical-striatal circuit (Figure S7C).

Whenwemeasured routing efficiency in the networksperturbed

with pruning and bouton deletion, we found that the reduction in

routing efficiency provoked by the perturbations is compensated

by the reduction in cost (Figure 4D, left; absolute value in Fig-

ure S6B). Interestingly, the impact of both axonal and dendritic

tree downscaling implied amarked reduction (43.35%)of the rout-

ing efficiency per unit of cost in the observed network but had only

a subtle impact (13.74%) in the uniform network (Figure 4D, left;

Figure S6C). This indicates that the impact of tree span perturba-

tions may be underestimated in generative models not taking

into account precise pre-synaptic connection distributions in the

axon. Morphological perturbations showed a subtle increase in

storage capacity per unit of cost (Figures 4D, right, and S6C).

This is explained by the fact that the approximation we used for

storage capacity is mainly dependent on the combinatorics of

diverse afferents on the same post-synaptic neurons.57 Interest-

ingly, the observed network showed a storage capacity per unit

of cost markedly higher than in the uniform network (60.99%)

when only dendritic trees are downscaled (Figure 4D, right). This

is the only case inwhich the observed distribution of putative bou-

tons appears to have a strong impact on network topology. This

result suggests that the synaptic targeting of diverse axonal arbors

is precisely matched with post-synaptic dendrites, implying that

even when strongly reducing dendritic tree size, post-synaptic

neurons can still keep receiving inputs from a diverse set of

incoming axons.

To assess the robustness of our results considering that the

experimental data are highly sparse, we removed half of the neu-

rons in the observed network (Figure S8A). We found that both the

degree distribution and triad census did not vary in comparison to

the observed network (Figures S8B and S8D), while the commu-

nity structure and routing efficiency and the storage capacity

per unit of cost markedly increased (by factors of 2.02 and 1.71,

respectively; Figure S8C). This suggests that increasing the

numbers of neurons used to generate whole-brain connectivity

networks is necessary to accurately assess circuit architecture.

DISCUSSION

Many datasets and analyses of the detailed morphology of full

neurons have become available recently.32,65,66 However, those

do not describe in detail the impact of axonal branching on po-

tential connectivity. From the single-cell perspective, at a more
d unperturbed network for scale (orange), prune (green), and bouton deletion

twork motifs identified with each index from simple to complex.

cost (number of potential contacts) for the unperturbed observed and uniform

perturbations. Bars indicate mean values ± standard deviation.
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local level, previous work from our lab addressed the subcellular

organization of post-synaptic sites in cortical layer 2/3 pyramidal

cells. We showed that the precise distribution and balance of

excitatory and inhibitory synapses shape single-neuron firing.2

Quantifying the precise distribution of pre-synaptic contacts in

full axons of mammal neurons has been addressed in some

studies that require arduous manual effort for their annota-

tion.37,40,41,67 In this work, we leverage automatically identified

putative axonal bouton locations obtained by our team.34 In

accordance with previous studies, our analysis shows that pre-

synaptic contact locations are not homogeneous throughout

the axon68,69 and that they vary among brain regions.41,42,70

However, these previous works focused on spatial averages of

bouton density, without addressing cell-to-cell connectivity.42

Another limitation of previous works is they focus on small

numbers of neurons in very specific neural types.41 In this

work, we quantify bouton distributions in 1,891 single neurons

from 97 brain regions. While previous approximations are

consistent with an enrichment of boutons in projection areas,

our data provide the most accurate and complete description

of non-homogeneous bouton distribution throughout axonal

trees to date. The consistency we found in morphologically

similar neurons suggests that the putative bouton connection

data we used are sufficient as a first approximation. Similarly,

the low variance we found in our quantification of increased

axonal bouton density in terminal branches is supported by pre-

vious evidence in local axonal trees, which has been suggested

to enhance temporal economy and precision in neocortical

inhibitory axonal trees.43 The fact that this phenomenon is found

for all the neurons we analyzed indicates that it is a fundamental

principle determining pre-synaptic contact distribution. We

expect that those neuron morphological properties will have

relevant physiological implications. From the dendritic perspec-

tive, it is well known that branching patterns have strong impacts

on single-neuron firing and computation that permeate to

impact network activity and behavioral performance in cognitive

tasks.71–73 It is reasonable to expect that such morphological

features will also be relevant in the physiology of axonal trees.

Still, further refining the methods to consider multiple synapses

in single boutons and pre-synaptic sites in the absence of bou-

tons will be necessary in the future. Those can be constrained

reliably based on electron microscopy observations of specific

cell types. However, electron microscopy quantifications in iso-

lated neuropile blocks or small neurite fragments are not suffi-

cient to approximate network connectivity.27 By combining

such quantifications with whole-brain neuronal morphometry in

a cell-type-based manner, we can leverage the advantages of

both techniques to describe neuronal circuitry with increased

throughput.71–73

One relevant aspect of our work is its special focus on long-

range projections, together with the development of the method

to generate whole-brain single-cell connectivity matrices. It is

worth noting that the aim of this work is not to generate accurate

and complete connectivity matrices but to explore the relevance

of non-homogeneous pre-synaptic contact distributions on the

network structure. Our algorithm for the generation of connectiv-

ity matrices based on full morphology neuronal reconstructions

is open source, and our scripts conform to a pipeline to generate
10 Cell Reports 43, 113871, March 26, 2024
full-brain networks with datasets that are expected to grow

exponentially in the future. Our comparison between observed

and uniform bouton distributions and their impact on network

structure supports the claim that Peters’ rule is an over-simpli-

fied model, which cannot truly reflect the differences in connec-

tions between brain regions and between neurons. It overesti-

mates the possibility of the existence of connections, which

leads to an overall bias in the properties of the network and sig-

nificant differences in its community structure and provincial vs.

connector hub scores, which is relevant for functional integration

and segregation.3 These results are consistent with previous

findings in the cortical network architecture, where most over-

lapping axons and dendrites are not connected, and the more

dendrites from different neurons the axon is exposed to, the

less probability there is that a connection exists.29

The network properties we found in single-cell networks also

complement our understanding of neuronal wiring rules. The

observed bouton network we analyzed shows increased occur-

rence of feedback and complex network motifs than what would

be expected in random networks, which is consistent with the

result found in the barrel cortex.29 Our results indicate that

such a pattern in the distribution of network motifs is not unique

to cortical networks but is also present in the thalamo-cortical

loop. Also in this study, the network was found to have small-

world properties, which was also confirmed in our single-cell

network. The degree distribution is close to scale free, and the

clustering coefficient is small.24

Existing studies suggest that neurological diseases such as in-

tellectual disability, autism spectrum disorder, epilepsy, schizo-

phrenia, and bipolar disorder are accompanied by a decrease in

dendrite branches and spines with atrophy of the dendrite

morphology.1,59,60,62,63 The most influential of these changes is

the decrease in the spine and the change in morphology.31

Deformation and damage of axons can also lead to various

neurological diseases.61,64 This phenomenon can be seen in

our perturbations. The biggest impact on the network properties

is the dendritic and axonal tree span scaling. And the studied

network is more robust to bouton removal and pruning of

branches, which is also supported by previous literature.74 All

operations on dendrites have a greater impact than on axons

for degree and network motif distributions. However, it is inter-

esting to note that dendrite downscaling shows increased stor-

age capacity per number of connections for the observed

network, while the same quantity does not change for the uni-

form network. This is an unexpected result suggesting that the

precise location of axonal boutons in diverse axonal arbors al-

lows us to keep high input combinatorics in single dendritic trees

even with marked downscaling of the dendritic span.

Limitations of the study
It is important to note that we do not aim to provide an accurate

synaptic scale connectome description in this paper but rather a

first approximation for whole-brain network architecture based

on full neuron tracings and bouton location data. Because of

the limited neuron and bouton data, the connectivity is very

sparse on a whole-brain scale. Thus, the total number of putative

detected boutons was 3,825,227, of which 181,691 (4.7%) were

identified as having potential connections with dendrites in our
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dataset. Moreover, there is a bias in the number of neurons on

cell type. Only three types of neurons, VPM (385), CP (325),

and SSp (253), had numbers above 100, and these three cell

types accounted for one-half of the total data (1,891). This leads

to a specific description of the thalamo-cortical-striatal circuit. It

is reasonable to expect that the observations reported here may

differ when more data become available. However, we are confi-

dent that the main features and trends we report provide valu-

able information toward the analysis and simulation of whole-

brain circuits at the single-neuron level.

The great variation in the size of the original brain leads to

some stretching and shifting of the neuron in the registration.

Some of the neurons, especially the neurons near the surface

of the cortex, had some axons beyond the atlas volume. Accord-

ing to our statistics, there are 738 neurons with data points

beyond the CCFv3 boundary. Among these neurons, the number

of out-of-bounds points is 7.46% of all points. This is also one of

the reasons we chose the cube size of 30 mm. There is no better

registration solution currently unless mass manual proofreading

is used. Still, soma locations all lay within the atlas volume, and

our connectivity generation method only requires axon and

dendrite colocalization, regardless of their location in space.

We did not aim to link our connectivity patterns exploration

with specific anatomical circuit descriptions here. While this is

a limitation of the current manuscript, ongoing studies from our

team are addressing those in detail.75
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Manubens-Gil (linusmg@seu.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Data: All original data including full neuron reconstructions, together with observed bouton locations can be found at: https://

drive.google.com/drive/folders/1NwwTe840_0KQhv-zVLhw58LU9nntkb-F The additional data including: full names of all cell

types involved, acronyms, number of neurons, and average bouton density; comparison between the bouton density calcu-

lated from our data and other articles; Statistical tests in Figure 3, including correlation and independence statistical test of de-

gree distribution and triad census among different networks; network analysis results: average path length, clustering coeffi-

cient, hubs and authorities scores and triad census; can be found at https://doi.org/10.5281/zenodo.8216366.

d Code: All versions of original code can be found at https://zenodo.org/doi/10.5281/zenodo.10617785.

d Additional information: Any other additional information required to reanalyze the data reported in this paper is available from

the lead contact upon request.

METHOD DETAILS

Sources of experimental data
Recent advances in light microscopy allowed the generation of complete neuronal reconstructions at micrometric resolution. Here,

we used 1891 full neuron reconstructions data with axonal bouton locations from a dataset obtained at SEU-Allen.32 The data was

generated using the MorphoHub platform,33,34 which follows a multi-level annotation protocol that we describe briefly: First, the

neuronal reconstruction is delineated using Vaa3D Terafly78 and TeraVR,79 being cross-checked by at least two annotators. Then,

we used a four-step approach to extract bouton data automatically. Firstly, the neuronal tree representation of L2 data is resampled

using a fixed-length interval. In this work, the interval is set to be 4 mm. Secondly, for each node in the neuronal tree, the correspond-

ing image intensity value is retrieved from the whole brain datasets. Since the nodes cannot be guaranteed to locate at the centers of

the putative boutons, the nodes can be locally shifted to the maximum intensity position within a small area (e.g., 2 voxels). We
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assume that the intensity of imaging signal along axons obeys the 1-D Gaussian distribution and a bouton site tends to have intensity

jump compared with its neighboring nodes. Thus, the third step is to calculate the intensity jump threshold for each small image block

(e.g., 128 3 128x123) as the standard deviation of the block, and extract bouton candidate in a block-wise manner. Finally, we re-

move any possible duplicates by deleting boutons at a distance closer than 5 voxels.34 We have presented an example of bouton

detection from 3D images in Figure S1C. According to our previous statistics, random inspection of the results indicated that the

bouton detection precision was above 95%. We also found that nearly 80% of the average spacing of adjacent boutons along an

axon ranged from 5 to 20mm. For more details, please refer to this paper33 for information about the specific bouton detection pro-

cess, and to this recent preprint34 for further anatomical analyses and data validation. Putative bouton locations are stored as an extra

column in extended Stockley-Wheal-Cole (ESWC) files describing the neuron morphology.80

The SEU-ALLEN dataset has a total of 1891 neurons suitable for predicting bouton locations. The dataset includes 97 cell types

defined by the brain region where their soma is located (s-types; see supporting datasets of glossary in the Data Availability section).

The reconstructions have been obtained from 39 brains and are equally distributed between the left and right hemispheres. After

annotation of the full neuronal structure, the trees have been spatially registered to CCFv3.35

Calculation of bouton distribution
Since downsampling was used to reduce the file size after the boutons were identified, we resampled the ESWC files at an interval of

10 mm. We measured the distribution of bouton and axon length through the full axonal tree using the Sholl analysis on the neuron

reconstructions before registration to CCFv3. The Sholl Analysis is the process of measuring neuron properties in concentric circles

around the soma, and it provides a quantitative description of morphological features for the analyzed neurons.81 We measured the

number of branches intersecting each circle and both cable length and number of axon boutons between consecutive circles at

100 mm intervals. To do so, we used the ‘‘sholl_analysis’’ function of the Navis package (version 1.3.0)82 in Python (version 3.9.7).

To validate the observed densities of boutons and to be able to compare to experimental measurements obtained with electron

microscopy, we obtained average bouton densities (number of boutons per micrometer of axon length) for all axons located in spe-

cific CCFv3 regions. We obtained the total number of observed boutons and divided by the total axon length in each region.

To test the impact of the inhomogeneous observed bouton distributions on the network structure, we generated model neurons

with homogeneous bouton densities. Given that different s-types showed diverse observed bouton distributions, we obtained the

average bouton density for each s-type. To do so, we scaled the average axon length distribution of each s-type within a scaling fac-

tor representing bouton density in a range between 0 and 1 with steps of 0.001. 0 would imply no boutons at all throughout the tree,

and 1 would imply one bouton for every micron of axonal length. We chose the scaling factor value that minimized the squared dif-

ference to the observed bouton distribution based on our experimental data. Given that these average bouton densities could be

useful for generating connectivity in models of cortico-thalamic circuits the obtained values can be found in the supporting datasets

in the Data Availability section.

To simulate a uniform distribution of axonal boutons in the individual reconstructions according to the average density of each

s-type, we devised an algorithm to define axon bouton locations synthetically. Specifically, first, we found all end nodes of all

branches, which are leaf nodes and backtracked from these leaf nodes sequentially. In the process of backtracking, boutons

were set at equal intervals defined by the inter-bouton distance determined by the inverse of the average bouton density. To prevent

repeated assignment of boutons in low-order branches, paths that had already been traversed were not visited again.

To compare with the bouton density in previous experimental studies, we counted the total axon length and the bouton number

from neurons with specific soma regions within any brain region in the CCFv3 model. The number of boutons per unit distance

was obtained by dividing the two values. But such a result tends to underestimate the bouton density because boutons are not evenly

distributed over the axon.

Generation of networks
Given that our full neuron reconstructions and bouton data are spatially registered to the mouse CCFv3, the neuronal morphologies

can be explored in the same coordinate space, allowing us to explore the colocalization of axonal boutons and dendritic trees. We

developed an algorithm to obtain a whole brain connectivity matrix at the single-cell level based on our dataset. In the resulting

network, nodes are single neurons and edges are the connection strength between a pair of neurons i and j. According to Peters’

rule,38 whether two neurons are connected can be determined by the presence of a nearby axon and dendrite. Here, we used a

nuanced Peters’ rule27 given that the potential connectivity is weighted by the number of boutons on such an axon-dendrite connec-

tion pair.

Specifically, first, we divided the whole brain into 30*30 mm cubes and calculated the axon length, dendrite length, and bouton

number of each neuron within each cube. We respectively calculated the network obtained when cube size was 1, 5, 10, 30 and

50 mm. Their number of nodes and edges are Cube = 1mm, N = 238, E = 150; Cube = 5mm, N = 1520, E = 3362; Cube = 10mm,

N = 1680, E = 7241; Cube = 30mm, N = 1781, E = 14056; Cube = 50mm, N = 1814, E = 18235. We chose the minimum resolution

that guarantees enough nodes and edges. And this is consistent with our recognition of the errors generated during the alignment

process.

We considered that when both axons and dendrites are present in a cubewith existing boutons, there is a potential connection.We

defined the connection strength based on the number of boutons in each cube (Equation 1). Given thatmultiple pre- and postsynaptic
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neuron segments may coexist in each cube, we distributed the total number of observed boutons to all dendrites in the cube accord-

ing to the proportion of dendrite length contributed by each neuron. We assumed that spines are uniformly distributed on the

dendrite, and therefore the length of the postsynaptic dendrite can be used as a proxy for the number of synaptic contacts. Thus,

the multiplication of the number of boutons and the proportion of the dendrite length in a cube can be considered as the connection

strength. This provides all pairwise connection strengths between pre- and postsynaptic neurons in each cube. By iterating this pro-

cess through the whole brain, a full single-cell connectivity matrix is obtained.

The three networks used for comparison: the random network, the small-world network and the scale-free network, can be gener-

ated directly by the functions in Igraph: ‘‘Erdos_Renyi()’’,83 ‘‘Watts_Strogatz()’’,48 ‘‘Barabasi()’’.47 For the random network, we keep

the number of nodes and edges the same as for the observed network. For the small-world network, we set the dimension of the

lattice to 1 and choose the rewiring probability to be 0.02. The size is the number of nodes in observed network. And the number

of edges is adjusted by giving the distance (number of steps) within which two vertices will be connected to make that as close

as possible to the observed network. Finally, the extra edges are removed randomly. Similarly, for the scale-free network, we adjust

the number of outgoing edges generated for each vertex to approximate the observed network while keeping the number of nodes

the same, and finally remove the excess edges randomly as well.

Network analysis
To quantify network structural properties, we obtained the degree distribution, triad census, hubs, and authorities using the ‘‘igraph’’

package (version 0.9.9) in Python (version 3.9.7). Correspondingly, this toolkit provides these functions: ‘‘degree_distribution()’’,

‘‘triad_census()’’, ‘‘authority_score()’’, ‘‘hub_score()’’, which we usedwith default parameters. We generated circular plots to visualize

the networks using Circos76 (version 0.6.9).

Community detection
To explore the community structure of the networks, we used the Leiden algorithm,46 which is an optimization of Louvain’s clustering

method84 that ensures detected communities are connected and have faster computation. Specifically, the Leiden algorithm divides

the graph nodes into communities while optimizing modularity in three phases: (1) local assignment of nodes into communities, (2)

refinement of the partition, and (3) aggregation of the network reducing the number of nodes to represent communities. Here we used

the ‘‘leidenalg’’ package46 (version 0.8.9) in Python (version 3.9.7), and to ensure that the analyzed communities had enough nodes,

we arbitrarily selected the largest six groups for subsequent analysis and especially to generate the simple plots accounting for the

major communities in each network.

Multi-objective optimality metrics
Considering that the basic function of a neural network is the transmission and storage of information and that building a network has

a material andmetabolic cost, we use three quantities to explore putative functional constraints of the network: cost, storage capac-

ity, and routing efficiency.77

Cost
Cost is defined as the number of boutons in the network.

C =
XN

i;j = 1

nbi;j (Equation 2)

where nbi,j is the number of boutons connecting a pair of neurons i and j, and N is the total number of neurons in the network.

Storage capacity
We estimated the storage capacity of a network as the sum of the total number of non-redundant possible states for each neuron

receiving s connections provided by d pre-synaptic neurons as previously defined by Poirazi and Mel for linear neurons.57 Briefly,

the combinatorial ‘‘n choose k’’ quantification of possible states for a post-synaptic neuron expressed in bits (basic unit of informa-

tion) is given by:

bL = 2log2

s+d � 1

s
(Equation 3)

and total storage capacity of the network by:

BL =
XN

i = 1

2log2

si+di � 1

si
(Equation 4)

Where N is the number of nodes in the network.
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Routing efficiency
Routing efficiency is inversely proportional to theweighted shortest path length 4ij in the network between any pair of nodes (neurons)

i and j. When two neurons in the network are closely connected or have more synapses, the path length between them is reduced,

and the routing efficiency increases. We obtained the shortest path length matrices using an in-house implementation of the Floyd-

Warshall algorithm.85–87 The formal definition for the routing efficiency is as follows:

Erout =
X

ij

1
�
4ij

NðN � 1Þ; isj (Equation 5)

Where 4ij is the graph shortest path length between the nodes i and j, and N is the total number of nodes in the graph.

Perturbation
To study the effect of putative biologically realistic1 morphological perturbations on the network, we designed three perturbation op-

erations: scaling of neuron size, pruning of neuron branches, and removal of synaptic boutons. We used those to perturb morpho-

logical details of the neurons, including their size, complexity of the neurites, and number of boutons.

Scaling of neuron size
This operation involves reducing the size of the axonal, dendritic tree, or entire neuron by a factor ranging from 0.5 to 0.9 in intervals of

0.1. For dendrite scaling, we select dendritic branches and scale the 3D spatial coordinates of all points forming the branches relative

to the coordinates of the soma. Since all dendritic branches in our data are connected to the soma, we can accurately scale their

coordinates. For axon scaling, we identify the longest axon branch as the projection branch and keep it unmodified. Then, we scale

the coordinates of the axon subtrees relative to the point of connection to the projection branch.

To separately study the impact of bouton distribution and axonal tree complexity, we adjust the number of boutons when scaling

axons. Bouton locations are assigned to specific nodes in the neuron tracings. In the case of uniform distribution, we reset the po-

sition of the boutons in the scaled axon according to the bouton density per unit of axon length. In the case of observed boutons, we

first calculate the distance between each consecutive pair of boutons and sort them from smallest to largest. The number of boutons

to be deleted is determined based on the scaling ratio, and the boutons are uniformly deleted from the distance-ordered list. This

procedure ensures that the distribution of boutons per unit of length remains unchanged after scaling the axonal tree size.

Pruning of neurites
Neurite pruning refers to the process of deleting a certain percentage of dendritic or axonal branches to modify the neuron

morphology. In our study, we performed various types of perturbations by removing only the axonal, dendritic branches, or both.

First, we identified the number of leaf nodes (termination points) in a given neuron. We then selected a set of leaf nodes based on

a pruning ratio ranging from 0.5 to 0.9 in 0.1 intervals. The pruning of single branches began from one of the selected leaf nodes

and proceeded through parent nodes until the first branch node was encountered, and all nodes in the path were deleted.

Removal of boutons
The process of removing boutons randomly does not alter the neuronmorphology but only deletes a fixed percentage of boutons.We

start by identifying the total number of boutons in a neuron, after which we select boutons randomly at a fixed proportion range be-

tween 0.5 and 0.9 in 10% intervals. We label the selected points as axonal continuation points, which signifies that the reassigned

nodes are not considered while generating connectivity matrices to establish connections.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample size of different neuron numbers is described in the results section either in themain text or figure legends.We tested putative

and random bouton distribution statistical differences using the one-way Analysis of Covariance (ANCOVA).We used pairwise t-tests

for all Sholl analysis differences in bouton distribution and bouton density of regions. Considering that the degree distribution and

triad motifs of the network are not Gaussian with order and outliers, we used two-sample Kolmogorov-Smirnov tests for the inde-

pendence test and Spearman correlation to show the correlation. We used pairwise t test for hub scores. We considered statistical

results to be significant when p < 0.05.We plotted asmean ± standard error of themean or ±standard deviation. For network random

instantiations and perturbations, we performed ten repetitions. All the analyses were performed using Python (version 3.9.7) and its

packages scipy (version 1.7.3).
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