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Abstract

Motivation: To digitally reconstruct the 3D neuron morphologies has long been a major bottleneck in neuroscience.
One of the obstacles to automate the procedure is the low signal-background contrast (SBC) and the large dynamic
range of signal and background both within and across images.

Results: We developed a pipeline to enhance the neurite signal and to suppress the background, with the goal of
high SBC and better within- and between-image homogeneity. The performance of the image enhancement was
quantitatively verified according to the different figures of merit benchmarking the image quality. In addition,
the method could improve the neuron reconstruction in approximately 1/3 of the cases, with very few cases of
degrading the reconstruction. This significantly outperformed three other approaches of image enhancement.
Moreover, the compression rate was increased five times by average comparing the enhanced to the raw image.
All results demonstrated the potential of the proposed method in leveraging the neuroscience by providing better
3D morphological reconstruction and lower cost of data storage and transfer.

Availability and implementation: The study is conducted based on the Vaa3D platform and python 3.7.9. The
Vaa3D platform is available on the GitHub (https://github.com/Vaa3D). The source code of the proposed image
enhancement as a Vaa3D plugin, the source code to benchmark the image quality and the example image blocks are
available under the repository of vaa3d_tools/hackathon/SGuo/imPreProcess. The original fMost images of mouse
brains can be found at the BICCN’s Brain Image Library (BIL) (https://www.brainimagelibrary.org).

Contact: h@braintell.org or dinglyosu@seu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Digital neuron reconstruction has long been a major challenge and
bottleneck in brain and neuroscience (Meijering, 2010; Svoboda,
2011). The current procedure of neuron reconstruction, despite sup-
ported by computer algorithms, mostly requires manual verification
and correction, making it infamously time consuming and labor in-
tensive. This adds a lot burden on the capacity of massive data man-
agement, which is necessary considering the fast growing data
amount under the development of imaging techniques. It is hence an
urgent need to automate the neuron reconstruction.

One major issue hampering the full automation of neuron recon-
struction is that the image quality varies largely in terms of the
signal-background contrast (SBC), the uniformity of the background
and the density of labeled neuron cells, which are all important
factors to neuron reconstruction algorithms (Zhou et al., 2015).
Such variations can be seen across different images and even among
different regions of a single image. To give a general view of the situ-
ation, we collected in Figure 1 example 3D dendritic images of

‘good’, ‘median’ and ‘poor’ quality, where the 3D images were rep-
resented as the maximum intensity projection (MIP) along z-axis.
The quality was graded via visual inspection. Images with denser
neuron cells (i.e. neurite arbors), lower contrast and higher noise
level were considered of poorer quality. Such large diversity of
image quality puts extreme challenges in automatic neuron recon-
struction as it is almost impossible to find an optimal parameter set-
ting that fits all images. A dynamic procedure for parameter
selection is always possible but can give vital errors especially for
images of poor quality. As a consequence, the neuron reconstruction
is prone to mistakes on images of poor quality or regions with obvi-
ous noise. To improve the image quality via techniques of image en-
hancement is thus considered as an effective way to push forward
the automatic neuron reconstruction.

There exist a large number of techniques for image enhancement.
With these procedures, it is expected to eliminate or reduce the influ-
ence from uneven background, low foreground–background con-
trast, low signal-to-noise ratio, etc. The denoising approaches range
from simple filtering to more advanced methods like sparse coding
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technology, image self-similarity and low-rank decomposition
(Dabov et al., 2006; Xu et al., 2018). Moreover, approaches are
developed to handle the issue of uneven illumination in microscopic
imaging, such as BaSiC, CIDRE and BAM (Chernavskaia et al.,
2017; Peng et al., 2017; Smith et al., 2015). Deep neural networks
are being applied in image enhancement as well, such as the Content
Sensing Image Restoration (CARE), N2V, PN2V, Noise2noise and
Noise2Self, to name a few (Batson and Royer, 2019; Buchholz et al.,
2019; Krull et al., 2020; Laine et al., 2019; Lehtinen et al., 2018;
Zhu et al., 2017). Methods are also reported specifically for the en-
hancement of neurite or fiber structures. For instance, a content
aware neuron image enhancement (CaNE) method was proposed
by formulating the task of image enhancement as an optimization
problem with the restriction of the gradient sparsity and tubular
structure of neuron images (Liang et al., 2017). In other algorithms,
the tubular structure of neurons is enhanced based on Hessian ma-
trix, gray-scale image distance transform, Meijering filtering, aniso-
tropic filtering, etc. (Hayman et al., 2004; Li et al., 2003; Meijering,
2010; Mukherjee and Acton, 2015; Zhou et al., 2015). Nonetheless,
the enhancement of neuron images is far from being well estab-
lished. The neuron morphology contains many subtle features like
thin but long neurite fibers and spines. One has to be careful not to
destroy these structures through any improper enhancement.
Another challenge for image enhancement of 3D neuron images is
the computation time, as the procedures applicable for 2D images
can easily be too slow for 3D images.

We report in this contribution a data pipeline for the enhance-
ment of 3D dendritic image blocks. The performance of the image
enhancement was verified with different figures of merit benchmark-
ing the image quality, the improvement of APP2(all-path-pruning)-
based neuron reconstruction, as well as the data volume after a
compression.

2 Materials and methods

2.1 Dataset
The study is based on the 3D images of single neurons acquired
from 54 mouse brains with the two-photon fluorescence imaging
system fMOST (Zheng et al., 2013). The whole-brain images were
down-sampled by the scale of two and cropped into blocks of fixed
image size (512�512�256, xyz), each covering the dendritic re-
gion of a neuron with the cell body (soma) at the block center. The
size of the image blocks was a trade-off between the computation
time and the coverage of the entire dendrite. Based on these image
blocks, we constructed two datasets for this study. The first was
composed of 2500 image blocks randomly selected among the 54
mouse brains, utilized to quantify the performance of the image

enhancement. The second dataset contained 605 image blocks as
typical examples of image quality ranging from ‘good’ to ‘poor’.
The neuron reconstruction was conducted on the second dataset to
investigate the improvement via the image enhancement.

2.2 Methods
The workflow of the study is given in Figure 2. Briefly, the image en-
hancement was conducted to improve the image quality. The per-
formance was qualified via the results of neuron reconstruction, in
which the dendritic morphology of the neurons was obtained via
APP2 algorithm (Xiao and Peng, 2013). The quantitative assessment
was conducted to quantify the performance of the image enhance-
ment. Details of these procedures are given as following.

The image enhancement starts with a sigmoid intensity adjust-
ment according to Equation (1), where I and Ia represent the gray
scales of input and adjusted image, respectively (Braun and
Fairchild, 1999). The image intensity was normalized to the range
0–1 before the adjustment and rescaled back to 0–255 afterward.
The parameter r was fixed to 3 for all images, while l was calcu-
lated on-the-fly as 25% percentile of the gray scales of the input
image (mostly below 10/255). The procedure is followed by sub-
tracting from the image block the minimum of this block along the
z-axis. A 3D bilateral filtering (Paris and Durand, 2009) was per-
formed afterward, with the window size of 3�3�1 (xyz), the spa-
tial sigma of 1�1�0.33 (xyz) and the range sigma of 35. This
helps reduce the noise without significantly harming the neurite
structures. Thereafter, we conducted a high-pass filter based on the
fast Fourier transform to eliminate the slowly varying background.

Ia ¼ 1

1þ e�rðI�lÞ : 1ð Þ

The digital neuron reconstruction was performed with the algo-
rithm APP2. The algorithm was enhanced with the in-house devel-
oped procedure of multi-soma correction, for which the publication
is under preparation. Details of the APP2 algorithms are referred to
Xiao and Peng (2013). The reconstruction was done with the same
parameter settings for all image blocks, with or without image en-
hancement. In particular, the minimal accepted length of the arbor
was set as five. The intensity threshold to separate the signal and
background was determined automatically as ave Ið Þ þ 0:5� stðIÞ,
where ave and st denote the average and standard deviation of the
image intensity I, respectively.

Besides above-mentioned procedures, we additionally quantified
the performance of image enhancement according to different fig-
ures of merits that benchmark the image quality. As is well-
recognized, to determine the optimal intensity threshold separating
the neuron signal form the background (i.e. pre-segmentation) is one

Fig. 1. Example dendritic images (in MIP) of different image quality. Images with denser neuron cells (i.e. neurite arbors), lower contrast and higher noise level were considered

of poorer quality
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of the key steps in the neuron reconstruction algorithms like APP2.
A higher SBC is critical for such pre-segmentation. Nevertheless, it is
not uncommon to see the intensities in foreground or background
vary largely over a single image, i.e. large dynamic range. This
makes it extremely difficult to find the optimal threshold for a good
pre-segmentation. Often an adaptive procedure is needed to deter-
mine the threshold locally, which increases the computation time
significantly. Background that are more homogeneous within an
image would be certainly helpful to improve the performance of
neuron reconstruction. In a better case, a pre-determined threshold
would be sufficient if the background does not vary a lot among dif-
ferent image blocks.

Bearing all the considerations above in mind, we took the SBC,
the within-image homogeneity (WIH) and between-image variations
(BIV) into consideration as the key aspects of image quality in the
scenario of neuron reconstruction. To do so, an image decompos-
ition was conducted to estimate the signal and background for each
specific image. This was achieved via the non-negative matrix fac-
torization (NMF) method (Févotte and Idier, 2011) under the inde-
pendence hypothesis between background and signal of fMOST-
based imaging. To be specific, the neurite arbors (signal) are mostly
contributed by the fluorescent dyes used in the sparse labeling; while
the background mostly comes from the auto-fluorophores or light
scattering. It is reasonable to consider the signal and background as
physically from different sources and hence independent to each
other. The procedure of the NMF decomposition is as following.
The average of every 10 image slices along z-axis was calculated and
unfolded as 1-dimensioanl vectors. These vectors of each single
image block were collected into one matrix. The NMF model was
constructed on this matrix with three components, which was used
on the entire image block to obtain the decomposed components.
The first component was used as the background, while the signal
was obtained as the difference between the image block and the
background component. We chose to do 3-component NMF as it
gives better background-signal separation (i.e. less signal is identi-
fied as background) than it does with a 2-component model. The fig-
ures of merits for the image quality were calculated from the results
of the background-signal estimation. In specific, the SBC was esti-
mated as the difference between the median intensity of the signal
and the background. The within-image homogeneity of the back-
ground was benchmarked by the entropy �

P
p ið Þlog2p ið Þ

� �
and

uniformity �
P

p ið Þ2
� �

, where pðiÞ represents the normalized histo-
gram (Van Griethuysen et al., 2017). The within-image homogeneity
of the signal was estimated by the relative standard deviation (RSD),
i.e. the standard deviation divided by the median value. The stand-
ard deviation of each quantity was used to measure the between-
image variations. To be clear, only the background under 99% per-
centile and the signal above 90% percentile were used for the calcu-
lation. This helps remove the influence of the residual signal in the
estimated background and vice versa, so that the quantification is
more reliable.

3 Experiments and results

3.1 Image quality
The example results of the image enhancement are given in Figure 3,
wherein the arbor density of the images varies from relatively sparse
to relatively dense. Each panel (i.e. a–h) represents one image block,
of which the upper left and right subplots give the MIP of the image

and the estimated background before enhancement; while the bot-
tom left and right subplots give the MIP of the image and the esti-
mated background after enhancement. The intensity of the
estimated background was rescaled for a clear visualization.
Apparently, the SBC is largely improved after the enhancement for
all images. The tiny features like dendritic spines (see panels a and c)
were more visible without the neurite arbors being destroyed.
Moreover, the background was well suppressed after the image en-
hancement and shown to be a lot more heterogeneous both within-
and between-image. In addition, the artifacts caused by image-
stitching (panels g–h) were well removed after the image
enhancement.

The observations above-mentioned were justified by the quanti-
tative comparison based on different quantities benchmarking the
image quality. In particular, we re-organized the gray scales of each
image as percentiles ranging from 5% to 95%, before and after the
image enhancement. The results of the 2500 image blocks are visual-
ized in log-scale as false-color plots in Figure 4a and b. For raw
images, the gray scale is seen to change continuously from low to
high percentiles and vary significantly among different images. It is
hardly possible to find a threshold clearly separating the background
and signal for one individual image, not to mention a threshold that
suits all images. The situation is changed after the image enhance-
ment, where a sharp change is seen between the low and high gray
scale. It thus becomes much easier to find a (global) threshold sepa-
rating the signal from the background.

More rigorous conclusions can be drawn from the figures of
merits shown as violin plots in Figure 4c–h. The quantities were cal-
culated from individual images and collected over all 2500 image
blocks for the violin plots. The results from raw and enhanced image
blocks were denoted by ‘raw’ and ‘en’, with their (global) median
marked as blue and red text, respectively. The ‘contrast’ stands for
the SBC; ‘med (sg)’ and ‘med (bg)’ for the median intensity of the
signal and background; the ‘ent (bg)’ and ‘uni (bg)’ for the entropy
and uniformity of background; and the ‘rsd (sg)’ the relative stand-
ard deviation of signal. Accordingly, the SBC is significantly
improved, with the median five times larger after the enhancement.
This is a direct consequence of the enlarged signal and the sup-
pressed background, as is shown by their median intensities in
Figure 4d and e. The within-image homogeneity of the background
and signal is proven to improve as well. As it is shown in Figure 4e
and f, the background features much lower entropy and higher uni-
formity after the image enhancement; while the signal shows signifi-
cantly decreased relative standard deviation. In addition, the
standard deviation of the background median (med (bg)) over the
2500 image blocks dropped from 3.51 to 0.17, that means a 20-
times decrease of the between-image background variation after the
image enhancement.

Notably, however, the background for 16 out of the 2500
images did show higher heterogeneous after the image enhancement,
featured by a higher entropy or lower uniformity compared to those
of raw images. We thoroughly checked these images and collected
their results in Supplementary Figure S1. As it will be seen, this hap-
pened mostly for images of extremely poor quality, i.e. low contrast
or high neuron density. The proposed algorithm may also fail
encountering sharp changes in the background like the image blocks
containing the edge of the tissue sample (Supplementary Fig. S1e–h).
Considering the probability of the occurrence (16 over 2500), how-
ever, the performance is by all means acceptable and satisfying.

Fig. 2. Workflow of the data pipeline: the improvement of the image quality after image enhancement is evaluated within the step of ‘quantitative assessment’, where the inten-

sity of both background and foreground is estimated with the NMF (non-negative matrix factorization) method. The improvement of the neuron reconstruction by image en-

hancement is verified based on the results of the APP2 (all-path-pruning) algorithm
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3.2 Neuron reconstruction
With higher SBC and improved within- and between-image homo-
geneity, as were shown above, the image enhancement is expected
to improve the neuron reconstruction. To validate, we investigated

the APP2-based neuron reconstruction on the 605 image blocks of
the second dataset. We particularly checked the results of 27 images
where the ground truth from the manual annotation by experienced
personnel is available. The reconstructions on raw and enhanced

Fig. 3. Example results of image enhancement: each panel (from a to h) represents the results of one image block. The upper left and right of each panel give the MIP of the

image and the estimated background before enhancement; while the bottom left and right of the panel give the MIP of the image and the estimated background after

enhancement

Fig. 4. Results of quantitative assessment. (a,b) Gray scales at different percentiles for the 2500 images, before and after the image enhancement, respectively. (c–h) Violin plots

of the figures of merit. All values were calculated on individual images and collected from all the 2500 image blocks. The results from raw and enhanced image blocks were

denoted by ‘raw’ and ‘en’. Notably, the ‘med (sg)’ and ‘med (bg)’ represents the median intensity of the signal and background, respectively. The ‘ent(bg)’ and ‘uni(bg)’ means

the entropy and uniformity of the background. The ‘rsd (sg)’ gives the relative standard deviation of signal
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images are visualized in Supplementary Figure S2 along with the
ground truth. No obvious difference was observed if the reconstruc-
tion was good enough on raw images like Supplementary Figure
S2a–c; and we did remove significant errors like those encircled by
boxes in Supplementary Figure S2d–i with marginally smaller
chance to introduce errors as marked by arrows in Supplementary
Figure S2h–j. Noteworthy, the image quality for these 27 images is
generally good and the neuron reconstruction is already close to per-
fect for raw images. It is thus reasonable not to see much improve-
ment via image enhancement. More significant improvement is
observed for images of relatively inadequate quality. This was dem-
onstrated while comparing the reconstruction on raw and enhanced
images for all 605 images. The number of reconstructions that are
better, comparable or worse reconstructions after the image en-
hancement are shown in Table 1, in which the 605 images are split
into different groups according to their image quality. Typical
reconstructions that are denoted as better, worse and comparable
are given in Figure 5, Supplementary Figures S3 and S4, respectively.
In particular, the neuron reconstruction is considered ‘better’ if it
contains less errors (e.g. distracted by background as Fig. 5a–e,
arbors from a neighbor neuron as Fig. 5f–j, missed reconstruction
for dim neurite arbors Fig. 5k–u), and ‘worse’ vice versa. A grade of

‘comparable’ is given if (i) there is no clear difference
(Supplementary Fig. S4a and b), (ii) the reconstruction is inadequate
in both cases (Supplementary Fig. S4c) or (iii) a clear judgement is
unlikely when too many neurons are present in the neighborhood of
the neuron under reconstruction (Supplementary Fig. S4d and e).

Following Table 1, the reconstruction was seen improved for
around 1/3 of the image blocks. Typical examples of improvement
are shown in Figure 5. The reconstruction was shown to be less dis-
turbed by background (a–e) or the arbors of neighbor neurons (f–j).
In addition, features that were too dim to be detected were well
reconstructed thanks to the enhanced image contrast (k–q). More

Table 1. The number of image blocks for each group (in total) and

how many of them give better/worse/comparable reconstruction

after the enhancement than it was without enhancement

In total Better Worse Comparable

Good 142 47 7 88

Median 336 122 10 204

Poor 127 28 8 91

Fig. 5. Typical examples where the neuron reconstruction gets better after the image enhancement (in red) in comparison with that without (in green) the image enhancement.

The examples represent different causes of a failed reconstruction on raw images: (a–e) disturbance from background or (f–j) the arbors of neurons in the neighborhood, (k–q)

features that were too dim to be detected and (r–u) the incomplete reconstruction of neurite arbors due to the sharp change in the background
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importantly, the neurite arbor that was not entirely reconstructed
due to the sharp change in the background was successfully recon-
structed after the image enhancement (r–u). Like it is shown in
Supplementary Figure S3, the reconstruction may also become infer-
ior after the image enhancement. The reasons for this include the in-
adequate removal of the background that contains high-frequency
information (Supplementary Fig. S3a–c), as has been discussed pre-
viously. In the meantime, the close-by neurite arbors may get con-
nected to each other as the tiny features like spines got enhanced,
leading to mistaken reconstruction to other neurons (Supplementary
Fig. S3d and e). Nevertheless, the results are well acceptable

considering the many cases of improved reconstruction and the
small probability of the inadequate background removal (16/2500

according to previous results).

3.3 Performance comparison
As a further verification, we compared our method to three other en-
hancement approaches based on the 605 images including adaptive

thresholding (ada-th), anisotropic diffusion (ani-diff) and multi-
scale enhancement (multi-en). All three approaches were imple-

mented via the plugins of the Vaa3D platform. In particular, the

Fig. 6. Example results of image enhancement: the five columns, from left to the right, represent the results with no enhancement, enhanced by adaptive thresholding, aniso-

tropic diffusion, multi-scale enhancement and the proposed method
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multi-scale enhancement was applied with parameters giving gener-
ally optimal results on neuron images: the scale of 2, the calibration
ratio for GWDT of 0.5, with soma detection and Gaussian blurring.
No parameter setting was required for the other two methods. The
enhanced images were used for neuron reconstruction with APP2 al-
gorithm, with parameter settings described previously in the section
‘Neuron Reconstruction’.

Example results after the image enhancement of different meth-
ods are shown in Figure 6. The images are selected to range from
‘good’ to ‘median’ quality. As a method to reduce noises, the aniso-
tropic diffusion did little to suppress the background and mostly
gives very similar results as for raw images. A significant decrease of
background was observed for all other three methods, while the
foreground signal was also increased for the multi-scale enhance-
ment and the proposed method. In particular, the neurite arbors are
visibly better emphasized by the multi-scale enhancement than they
are by the proposed method. This is reasonable as the multi-scale en-
hancement was designed to selectively enhance tubular structures.
However, such selective enhancement may sacrifice the neuron
arbors of short lengths as it is shown in Figure 6d. It also risks to
introduce artifacts by wrongly enhancing the patterns in the back-
ground (Fig. 6e) or to suppress neurite arbors of low intensity
(Fig. 6a–c). In particular, a significant information loss is observed
for the encircled region in Figure 6e and f, where a stitching effect
was caused by the uneven illumination between two subsequent
scans of the fMost-based imaging. Without any selective procedure,
in contrast, the proposed method is demonstrated to give the best
compromise among the signal enhancement, the information loss
and the minimal artifact.

Similar to the procedure mentioned beforehand, the neuron re-
construction on the enhanced images was compared to that on raw
images for each enhancement approaches. To do so, we calculated
the number of image blocks showing better, worse or comparable
reconstruction after the enhancement. The results are shown as per-
centage for the three groups of different image quality (good, me-
dian, poor) in each subplot separately in Figure 7. The proposed
method is observed to outperform the other three approaches from
two aspects. (i) It gives more cases of ‘better’ reconstructions and
less cases of ‘worse’ reconstruction than all the other three
approaches for all three image groups. (ii) It gives significantly more
‘better’ than ‘worse’ cases for all three image groups, which occurs
for adaptive threshold and anisotropic diffusion only on ‘good’
images. Despite the many ‘better’ cases, the multi-scale enhancement
‘harms’ the reconstruction in more cases. This is mainly because the
dim neuron arbors get significantly suppressed and are thus missed
for reconstruction (see Fig. 6).

Shown in Figures 8 and 9 are the neuron reconstruction for
images of ‘good’ and ‘median’ quality, respectively. The results from
raw images are given in the first column, followed by those with

enhancement by different methods. The images are selected so that
the reconstruction looks relatively reasonable in all cases of en-
hancement. Therefore, we did not present the results from ‘poor’
quality as the reconstruction was mostly failed even with image en-
hancement. Generally speaking, the anisotropy diffusion is prone to
over-trace and mostly gives similar results as for the raw images.
The adaptive thresholding and multi-scale enhancement give an
improved reconstruction for images of Figure 8a–c, where the arbors
are disturbed by background or surrounded by many disturbing sig-
nal. Nonetheless, both approaches show a significant rate of under-
tracing in many other cases, as it is observed in the examples of
Figure 8d–g. The proposed method is proven to be a good com-
promise between under- and over-tracing. Despite the remained
errors caused by the residual background in Figure 8a–c, the ‘redun-
dant’ fibers could be well removed without significantly harming the
‘true’ fibers in many other cases (see Fig. 8d–g). These conclusions
are even more clear for images of ‘median’ quality shown in
Figure 9, which again indicates the unique advantage of the pro-
posed method in dealing with images of ‘median’ quality.

3.4 Compression rate
Besides the performance of neuron reconstruction, another big con-
cern in neuroscience goes to the massive image size considering the
exponentially growing data-scale. With this in mind, we randomly
picked 100 out of the 2500 image blocks, each with 64 MB volume
and compressed into ‘.zip’ files based on the LZMA (Lempel–Ziv–
Markov chain) algorithm in the 7z toolkit (Pavlov). The data vol-
umes after compression are summarized in Table 2 for both individ-
ual image blocks and the total amount. In total, the data volume
was decreased from 6400 to 960 MB and 241 MB for raw and
enhanced images, respectively. This means an average compression
rate of 15.0% and 3.8%, almost 4 times decrease via the image en-
hancement. In the best case, the compression rate of a single image
block was decreased almost 20 times from 6.9% for raw to 0.35%
after being enhanced. The proposed image enhancement is hence po-
tential to reduce the cost of data storage and transfer.

4 Conclusions and discussion

In this contribution, we proposed a pipeline of image enhancement
to improve the quality of 3D neurite images. The method is designed
to simultaneously suppress the background and enhance the fore-
ground. This improves the SBC as well as the within- and between-
image homogeneity, as was demonstrated quantitatively by the dif-
ferent figures of merits benchmarking the image quality. The
method is shown to largely narrow down the dynamic range of the
foreground signal, which helps to separate the foreground from the
background during the subsequent reconstruction. Therefore, it has

Fig. 7. Percentage of the neuron reconstruction getting better, worse or comparable after being enhanced with different approaches including adaptive threshold, anisotropic

diffusion, multi-scale enhancement and the proposed method. The percentage was calculated for three image groups separately as denoted in the x-axis (Good, Median, Poor)
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Fig. 8. Results of the neuron reconstruction on images of ‘good’ quality, i.e. relatively sparse neuron arbors and flat background. The five columns, from left to right, represent

the cases without image enhancement (‘none’), and with enhancement by the four different approaches
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Fig. 9. Results of the neuron reconstruction on images of ‘median’ quality, i.e. relatively dense neuron arbors or disturbing background. The five columns, from left to right,

represent the cases without image enhancement (‘none’), and with enhancement by the four different approaches
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shown significant advantages to improve the neuron reconstruction,
particularly for images of ‘median’ quality. In addition, we could see
5 times of increase in the compression rate for 7z compression com-

paring the enhanced to raw images, making the method potentially
advantageous to reduce the cost in data storage and transfer. Unlike

the methods that selectively enhance the tubular structures to be
used for neuron images (e.g. multi-scale enhancement), the proposed
method is not limited to enhancing any specific structures. In fact, it

shows also great performance in enhancing tiny features like den-
drite spines (see Figs 3 and 6). Hence it is very likely helpful in the

scenarios of bouton or spine detection as well. However, by narrow-
ing down the dynamic range of the foreground signal, the method
may fall short for quantitative analysis where the intensity of the

neurite arbors is important. Further improvement of the method
also goes to its capability to deal with sharp changes in the back-

ground, where it introduces artifacts at current stage. This could be
done by additionally taking the local information of the back-
ground, instead of only global information as it is right now.

Our method was implemented in Cþþ as a plugin program on
the Vaa3D platform (Peng et al., 2010). The computation, involving

image import and results saving, takes by average 15 s per image
with the size of 512�512�256, xyz, on a Windows machine with
Intel (R) i9-10900K 3.7 GHZ CPU, largely faster than the approxi-

mately 150 s for the multi-scale enhancement. Embedding the
method on the fly and hence leverage the procedure of manual/auto-

matic reconstruction and even image acquisition can be valuable
work to do in the future.
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